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DOWNLOAD DIRECTORIES FOR PYTHON CODE 

 Google drive 

 GitHub 

emRS02.py   Irradiance in XY planes 

 

emRS02Z.py  Irradiance along the +Z axis 

 

 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/python
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INTRODUCTION 

The Rayleigh-Sommerfeld diffraction integral of the first kind is 

used to calculate the intensity from a circular aperture that is 

uniformly illuminated by monochromatic light of wavelength  .  

The geometry of the aperture and observation spaces is shown in 

figure 1 and figure 2 shows an outline of how to the RS1 diffraction 

integral is computed in Python. Figure 3 shows a [2D] and [3D] view 

of the uniform aperture intensity. 

 

 

Fig. 1.  Geometry of the aperture and observation spaces. 

 

 

  

 

https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/emRS01.pdf
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Fig. 2.  Matrices used in computed the diffraction integral. 

 

Fig. 3.  [2D] and [3D] views of the uniform aperture intensity. 

emRS102.py 
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Both the Fraunhoffer and Fresnel diffraction patterns in the 

observation space can be computed easily by evaluating the RS1 

diffraction integral. 

 

The Fraunhofer diffraction pattern for the circular aperture is 

circularly symmetric and consists of a bright central circle 

surrounded by series of bright rings of rapidly decreasing strength 

between a series of dark rings (figure 4). The bright and dark rings 

are not evenly spaced. The bright central region is known as the Airy 

disk. 

 

Fig. 4.   Fraunhoffer diffraction pattern of a circular aperture of 

radius a.   emRS102.py 
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The image shown in figure 4 is like a black and white time exposure 

photograph of the diffraction pattern that would be observed on a 

screen for a uniformly illuminated circular aperture. The bright 

centre spot corresponds to the zeroth order of diffraction and is 

known as the Airy disk and It extends to the first dark ring. 

 

Fig. 4.   The irradiance patterns in a radial direction (linear scale and 

decibel scale for the irradiance).    emRS102.py 

The input parameters for figure 4 are 

#%% INPUT PARAMETERS  
# Grid points: Q aperture space    nQ format odd number 
#              P observation space nP format integer * 4 + 1 
nQ = 199; num = 59;   nP = num*4+1 
# Wavelength [m] 
wL = 632.8e-9  
# Aperautre space: radius a / XY dimensions of aperture [m] 
a = 4e-4; aQx = 2*a; aQy = 2*a            
# Observation spacehalf: half-width % zP   [m]  
xPmax = 10*a; yPmax = 10*a; zP = 1   
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In the far-field or Fraunhofer region, the irradiance is given by 

equation 1  
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where  J1 is the Bessel function of the first kind and vp is the radial 

optical coordinate and is a scaled perpendicular distance from the 

optical axis (equation 2). 
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Fig. 5. Bessel function of the first kind using a Python function. 

emRS102.py 

      from scipy.special import  

      j1   num = 9999 

     v = linspace(0,20,num) 

     J1 = j1(v). 
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The zeros of the Bessel function are given in Table 1. The row A are 

values from the internet and row P are calculated in Python using a 

zero crossing routine. 

Table 1.  Zeros of the Bessel function J1 

A 3.832 7.016 10.174 13.324 16.471 19.616 

P 3.831 7.015 10.172 13.323 16.469 19.614 

# Radial optical coordinates for zeros in Bessel function 
J1index = zeros(10); p = 0 
for c in range(num-2): 
    q = J1[c]*J1[c+1] 
    if q <= 0: 
       J1index[p] = c 
       p = int(p+1)      
J1index = J1index.astype(int) 
vZeros = v[J1index]     

 

In figure 4, the radial coordinate is /Pr a . The zeros in the irradiance 

are found with the Python function find_peaks which is used to find 

the minimum values in the irradiance function expressed in decibels. 

# RS1 predictions for location radial positions for zero intensity 

#   Radial intenisty array  IX and IdB  

IdB = 10*np.log10(Ix) 

q = find_peaks(-IdB) 

xZ_RS1 = xP[q[0]]/a 

 

The zeros in the radial coordinate /Pr a are also found from the Table 

1, row A (Bessel function zeros). 

# Observation space: radial positions for zero intensity xZ 

#   Zeros for Bessel function of first kind  J1(rho = 0)  
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#   Angles (theta) for zeros in diffraction pattern     

rho = 

np.array([3.8317,7.0156,10.1735,13.3237,16.4706,19.6159]) 

theta = np.arcsin(rho/(a*k)) 

xZ = zP*np.tan(theta)/a 

 

The zeros in the irradiance are given in Table 2. The row A are values 

from the internet Bessel function zeros and row P are calculated in 

Python. 

 

Table 2.  Zeros of the irradiance: radial coordinate /Pr a . 

A 2.41 8.39 10.37 12.35   

P 2.42 8.39 10.30 12.33 14.36 19.614 

 

 

We can estimate the strengths of the irradiance peaks again using 

the find_peaks function 

# Relative intensities of maxima 

q = find_peaks(Ix) 

peaks = Ix[q[0]] 

 

          →   1.0000   0.0220    0.0046   0.0017   0.0008   0.0005   0.0003 

 

 

Energy enclosed within the dark rings of the diffraction pattern 

It is possible to calculate the energy enclosed within a ring of a 

specified radius on the observation screen by numerically integrating 

the irradiance with ever increasing radius. 
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# Power enclosed with a circle [a.u.] 

r  = xP[indexXY:nP] 

Ir  = Ix[indexXY:nP] 

Pr = zeros(len(r)) 

for c in range(len(r)): 

    if c > 1: 

       Pr[c] = simps(r[0:c]*Ir[0:c],r[0:c]) 

Pr = 100*Pr/max(Pr) 

 

Figure 6 shows the power as a total of maximum power enclosed 

within circles of increasing radius. About 84% of the energy from the 

aperture to the observation screen is enclosed within the Airy disk as 

indicated in figure 6. 

 

Fig. 6.   Percentage power enclosed within rings of increasing radius 

on the observation screen in the far field for a uniformly illuminated 

circular aperture.  About 84% of the total power is enclosed within 

the first dark ring.   emRS102.py 
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Divergence of the beam and wavelength 

The wavelength can be changed in the Python Code emRS102.py to 

investigate the dependence of the irradiance pattern in an XY plane 

with wavelength (figure 7). 

 

Fig. 7.  The smaller the wavelength of the incident radiation, then the 

narrow the beam. For the blue light, the dark rings are much closer 

together than for the red light.    emRS102.py 
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Divergence of the beam and aperture radius 

The radius of the aperture can be changed in the Python Code 

emRS102.py to investigate the dependence of the irradiance pattern 

in an XY plane with aperture size (figure 8). 
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Fig. 8.  The smaller the aperture radius, then the wider the beam. For 

the larger radius aperture, the dark rings are much further apart. 

emRS102.py 
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Fraunhoffer to Fresnel diffraction 

The Rayleigh-Sommerfeld diffraction integral of the first kind (figure 

2) is valid right up to the aperture for the calculation of the electric 

field at an observation point P. The transition from Fraunhofer 

diffraction to Fresnel diffraction can be expressed in terms of the 

Rayleigh distance. The Rayleigh distance in optics is the axial 

distance from a radiating aperture to a point an observation point P 

at which the path difference between the axial ray and an edge ray is 

λ / 4. A good approximation of the Rayleigh distance RLd  is 

 

2
4

RL

a
d


=  

where a is the radius of the aperture. The Rayleigh distance is 

approximately the value of zP where the first minimum in the 

irradiance is greater than zero (figure 9). 

 

    P RLz d       Fresnel diffraction 

      P RLz d      Fraunhofer diffraction. 

 

For figures 9 and 10 

0.40 mm 633 n m  1.m 01RLa d == = →  
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Fig. 9.  The first minimum is greater than zero ( )     1.01 mP RLz d = . 

emRS102.py 
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Fig. 10.   Transition from Fraunhofer diffraction to Fresnel diffraction. 

emRS102.py 
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Irradiance Iz along the optical axis (+Z axis) 

The Python Code emRS1Z.py  is used to calculate the irradiance as a 

function of the distance from the centre of the aperture along the +Z 

axis. THE Rayleigh-Sommerfeld diffraction integral can calculate 

electric field up to the aperture. Sample computations are shown in 

figure 11 for Fraunhoffer diffraction) ( )     1.01 mP RLz d =  and figure 

12 for Fresnel diffraction ( )     1.01 mP RLz d = .   

 

Fig. 11.  Fraunhoffer region. The irradiance falls off according to the 

inverse square law as the light from the aperture can be 

approximated as a point source. emRS102Z.py 

nQ = 99   nP = 637 

wavelength  wL = 633  nm 

aperture radius  a = 0.400  mm 

z1 = 1.50 m     z2 =  3.00  m  

Iz(z1) = 1.000   Iz(z2) = 0.254   Iz(z2)/Iz(z1) = 0.254 
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Fig. 12.  Fresnel region. The irradiance oscillates near the region of 

the aperture as the distance zP increases due to the constructive and 

destruction effects of the light coming from different regions of the 

aperture.   emRS102.py 

nQ = 99   nP = 637 

wavelength  wL = 633  nm 

aperture radius  a = 0.400  mm 

z1 = 0.01 m   z2 = 0.10 

Iz(z1) = 1.000   Iz(z2) = 0.297   Iz(z2)/Iz(z1) = 0.297 

  

 


