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INTRODUCTION 

The core mathematical framework for modern biophysically based 

neural modelling was developed around 1950 by Alan Hodgkin and 

Andrew Huxley. They carried out a series of elegant 

electrophysiological experiments on squid giant neurons which have 

extraordinarily large diameters (~ 0.5 mm).  

 

Hodgkin and Huxley systematically demonstrated how the 

macroscopic ionic currents in the squid giant axon could be 

understood in terms of changes in Na+ and K+ conductances in the 

axon membrane. Based on a series of voltage-clamp experiments, 

they developed a detailed mathematical model of the voltage-

dependent and time-dependent properties of the Na+ and K+ 

conductances. Their model accurately reproduces the key 

biophysical properties of the action potential. For this outstanding 

achievement, Hodgkin and Huxley were awarded the 1963 Nobel 

Prize in Physiology and Medicine. 

 

In biophysically based neural modelling, the electrical properties of a 

neuron are represented in terms of an electrical equivalent circuit. 

Capacitors are used to model the charge storage capacity of the 

neuron membrane (a semipermeable cell membrane separates the 

interior of the cell from the extracellular liquid and acts as a 

capacitor). Resistors are used to model the various types of ion 
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channels embedded in the membrane, and batteries are used to 

represent the electrochemical potentials established by differing 

intracellular and extracellular ion concentrations. Figure 1 shows the 

equivalent circuit used by Hodgkin and Huxley in modelling a 

segment of squid giant axon.  The current across the membrane has 

two major components, one associated with the membrane 

capacitance and one associated with the flow of ions through 

resistive membrane channels. They found three different types of ion 

currents: Na+, K+, and a leak current that consists mainly of Cl- ions. 

The flow of ions through a cell membrane of a neuron are controlled 

by special voltage dependent ion channels: Na+ ion channel, K+ ion 

channel and a leak ion channel for all other ions. The neuron is 

stimulated by an external current Iext injected into the interior of the 

neuron. 

Circuit components (figure 1) 

Vm   membrane potential  [mV]     inm outV V V= −  

Cm   cell membrane  [ F]     cm   [ F.cm-2]      

GNa, GK, GL  voltage-dependent conductances  Na+, K+ and leak  

       current   1 /G R=    [mS.cm-2] 

ENa, EK, EL
   reversal potentials  [mV]  

INa, IK, IL    ion currents   [ A]        

     
0 internal    external  

0 internal    external       

I

I

 →

 
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Fig. 1.   Electrical equivalent circuit for a short segment of squid giant 

axon.  

 

Fig. 2.  Sign convention for membrane currents. 
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Electrical activity in neurons is sustained and propagated by ion 

currents through neuron membranes as shown in figure 1. Most of 

these transmembrane currents involve four ionic species: sodium 

Na+, potassium K+, calcium Ca2+ and chloride Cl-. The concentrations 

of these ions are different on the inside and outside of a cell. This 

creates the electrochemical gradients which are the major driving 

forces of neural activity. The extracellular medium has high 

concentration of Na+ and Cl- and a relatively high concentration of 

Ca2+. The intracellular medium has high concentration of K+ and 

negatively charged large molecules A-. The cell membrane has large 

protein molecules forming ion channels through which ions can flow 

according to their electrochemical gradients but not the A-  ions. 

 

The concentration asymmetry is maintained through 

• Passive redistribution: The impermeable anions A- attract more 

K+ into the cell and repel more Cl- out of the cell. 

• Active transport: Ions are pumped in and out of the cell by ionic 

pumps.  

 

A mathematical analysis of the equivalent RC circuit for the neuron as 

shown in figure 1 is outlined by the following equations. 
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Membrane potential difference measured w.r.t. Vout
 = 0  

 inm outV V V= −  

Capacitive current: rate of change of charge Q at the membrane 

surface 

 /
C m

I dQ dt=           

Charge stored on surface of membrane 

 m m m
Q V C=  

Differentiating Q  w.r.t. t  at a fixed position x0 

 /
C m m

I C dV dt=    

Membrane current due to movement of ions 

  m Na K L
I I I I= + +    

Kirchhoff’s current law (conservation of charge) 

 ext C m C Na K L
I I I I I I I= + = + + +        

The fundamental differential equation relating the change in 

membrane potential to the currents through the membrane for a 

small segment of the membrane 

/
m m ext m ext Na K L

C dV dt I I I I I I= − = − − + −     

 

It is better to use the current density J rather than current I.  

 /
m m ext m ext Na K L

c dV dt J J J J J J= − = − − + −     

where / /
m m

J I A c C A= =  

Electrical potential V, current I, resistance R and conductance G and 

current densities are related by the equations 
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1 V I G
R I G V J g J g V

G R A A


= = =  = = =   

( ) ( ) ( )
Na Na m Na K K m K L L m L

J g V E J g V E J g V E= − = − = −  

_ maxL L
g g=  

 

The Na+ and K+ ions are considered to flow through ion channels 

where a series of gates determine the conductance of the ion 

channel. The macroscopic conductances of the Hodgkin and Huxley 

model arise from the combined effects of a large number of 

microscopic ion channels embedded in the membrane. Each 

individual ion channel can be thought of as containing one or more 

physical gates that regulate the flow of ions through the channel. 

 

An activation gate    → conductance increases with depolarization  
 

An inactivation gate → conductance decreases with depolarization  
 

The variation in the conductance values is determined by the set of 

gate variables  n, m and h and were determined from experimental 

data. 

 

The Na+ channel is controlled by 3m activation gates and 1h 

inactivation gate   3

_ maxNa Na
g g m h= . 

The K+ channel is controlled by 4n activation gates  4

_ maxK K
g g n= . 
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The value of the conductances ,Na Kg g  depends upon the membrane 

voltage Vm because the values of n, m and h depend on time, their 

previous value at an earlier time and the membrane potential.  

 

The rates of change of the gate variables are described by the 

equations 

( ) ( ) ( )1 1 1
n n m m h h

dn dm dh
n n m m h h

dt dt dt
     = − − = − − = − −  

 

where the   ’s and  ’s are rate constants   ( )or orx n m h  

  →  rate of closed gates opening   

         (1 )
x

x −   fraction of gates opening per second   

          →   rate of open gates closing 

         x
   →  fraction of gates closing per second 

      

-6.3

103

T

m rest
dV V V



 
 
 =

= −

 

 

       

 

0.10 -  0.01 

exp(1 -  0.1 ) -  1

  0.125exp(- /  80)

n

n

dV

dV

dV

 

 

 
=  

 

=
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 

2.5 -  0.1 

exp(2.5 -  0.1 ) -  1

  4exp(- / 18)

m

m

dV

dV

dV

 

 

 
=  

 

=

 

         

 0.07 exp(- /  20)

1
   

exp(3.0 -  0.1  )  1

h

h

dV

dV

 

 

=

 
=  

+ 

 

 

If there is no external stimulus J0 = 0 and Vm = Vrest  then Jm = 0 and 

Vm does not change with time t as dVm / dt = 0. A stimulus as a result 

of a current injection into the axon results in the membrane 

potential either increasing above or decreasing below the resting 

membrane potential.  

 

The charge per unit area Q deposited into intracellular region by 

the external stimulus Jext is given by 
ext

Q J dt=  . If the stimulus 

is strong enough, an action potential can be evoked.  
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A typical action potential is shown in figure 3. 

 

Fig. 3.  Typical action potential. Action potential produced by an 

external current pulse. The time course of the membrane shows the 

action potential (positive peak) followed by a relative long refractory 

period where the potential is below the resting potential. 
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SIMULATIONS 

Python is used to solve the Hodgkin-Huxley equations for different 

external current stimulations as described below for the Python Code 

pyNS003.py.  The Code is constructed as a sequence of Cells. 

• Set grid and simulation time 

• Set the default HH model parameters 

• Initialize all the time dependent arrays 

• Setup the external current density. A current density is selected 

with the variable flag. 

• Set up the initial values for the time dependent arrays. For the 

initial conditions, the membrane potential is set at its resting 

value where the membrane current is zero. 

               

(0)

(0) (0) (0) (0) 0

(0)( ) (0)( ) (0)( ) 0

rest

ext Na K L

Na Na K K L L

V V x

J J J J

g x E g x E g x E

= =

= + + =

− + − + − =

 

 

The unknown value x for membrane potential at t = 0 is found 

using the Python function solve (from sympy import solve). 

Note the value x returned has to be converted to a float. 

• The ode for the membrane potential is solved using a finite 

difference method. At each time step the values of the rate 

constants ( ),  , gate variables ( ), ,n m h , conductances ( )g  

and current densities ( )J  are computed.   

• Calculation of the variables 2 2
, / , / ,mJ dv dt d v dt Q  
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• Console output 

•  Graphical output 

• Save figures as png files 

 

#%% 
import numpy as np 
from numpy import pi, sin, cos, exp, linspace, zeros, amax, array, 
ones  
import matplotlib.pyplot as plt 
from scipy.integrate import odeint, quad, dblquad, simps 
import time 
from sympy import solve, symbols 
 
tStart = time.time() 
 
#%%  INPUTS / SIMULATION TIME 
N = 9999     # Grid points 
tMax = 5.0   # Simulation time [ms]  
t = np.linspace(0,tMax,N) 
dt = t[2] - t[1]   
 
#%%   FIXED PARAMETERS  
T = 20            # temperature [20 deg C] 
eps = 1e-16 
 
EN = 50          # reversal voltage Na+ [mV] 
EK = -77         # reversal voltage K+  [mV] 
EL = -76         # reversal voltage leak [mV] 
C  = 1.0          # membrane capacitance/area  [uF.cm^-2] 
 
GK = 36          # K+ max conductance [mS.cm^-2] 
GN = 120         # Na+ conductance [mS.cm.-2)] 
GL = 0.3         # max leakage conductance [mS.cm-2] 
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#%% SETUP TIME DEPENDENT MATRICES 
V    = zeros(N)       # membrane potential (mV) 
JN   = zeros(N)       # Na+ current density (uA.cm^-2) 
JK   = zeros(N)       # K+  current density (uA.cm^-2) 
JL   = zeros(N)       # leakage current density (uA.cm^-2) 
Jm   = zeros(N)       # membrane current (uA.cm^-2) 
Jext = zeros(N)       # External current stumulus  (uA.cm-2) 
 
gN = zeros(N)       # Na+ conductance 
gK = zeros(N)       # K+ conductance 
gL = GL*ones(N)        # gL conductance 
 
n    = zeros(N)       # K+ gate parameter 
m    = zeros(N)       # Na+ gate parameter 
h    = zeros(N)       # Na+ gate parameter 
 
#%% EXTERNAL CURRENT STIMULUS 
flag = 1  
  
J0 = 15.0            # Amplitude of pulse  
 
if flag == 1:    # Pulse   t1 (on) / t2 (off) 
   t1 = 0.5; t2 = 1.0  
   N1 = round(t1/dt); N2 = round(t2/dt) 
   Jext[N1:N2] = J0 
 
#%% INITIAL VALUES 
phi = 3**((T-6.3)/10)    # temperature dependent variable 
dV = 0 
An0 = phi * (eps + 0.10 - 0.01 * dV) / (eps + exp(1 - 0.1 * dV) - 1) 
Am0 = phi * (eps + 2.5 - 0.1  * dV)  / (eps + exp(2.5 - 0.1 * dV) - 1) 
Ah0 = phi * 0.07 * exp(-dV / 20) 
 
Bn0 = phi * 0.125 * exp(-dV / 80) 
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Bm0 = phi * 4 * exp(-dV/18) 
Bh0 = phi * 1 / (exp(3.0 - 0.1 * dV) + 1) 
 
n0 = An0/(An0+Bn0); n[0] = n0 
m0 = Am0/(Am0+Bm0); m[0] = m0 
h0 = Ah0/(Ah0+Bh0); h[0] = h0 
 
gN0 = GN*m0**3*h0; gN[0] = gN0 
gK0 = GK*n0**4   ; gK[0] = gK0 
gL0 = gL[0]       
 
x = symbols('x')   # find resting membrane potential 
z = solve(gN0*(x-EN)+gK0*(x-EK)+gL0*(x-EL), x) 
Vrest = z[0] 
Vrest = float(Vrest) 
V[0] = Vrest 
 
JN0 = gN0*(Vrest - EN); JN[0] = JN0 
JK0 = gK0*(Vrest - EK); JK[0] = JK0 
JL0 = gL0*(Vrest - EL); JL[0] = JL0 
Jm0 = JN0 + JK0 + JL0 ; Jm[0] = Jm0 
 
#%% SOLVE ODE 
for s in range(N-1): 
     
    dv = V[s] - Vrest 
    An = phi * (eps + 0.10 - 0.01 * dv) / (eps + exp(1 - 0.1 * dv) - 1) 
    Am = phi * (eps + 2.5 - 0.1  * dv)  / (eps + exp(2.5 - 0.1 * dv) - 1) 
    Ah = phi * 0.07 * exp(-dv / 20) 
 
    Bn = phi * 0.125 * exp(-dv / 80) 
    Bm = phi * 4 * exp(-dv/18) 
    Bh = phi * 1 / (exp(3.0 - 0.1 * dv) + 1) 
 
    n[s+1] = n[s] + dt * (An *(1-n[s]) - Bn * n[s])  
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    m[s+1] = m[s] + dt * (Am *(1-m[s]) - Bm * m[s])  
    h[s+1] = h[s] + dt * (Ah *(1-h[s]) - Bh * h[s])  
 
    gK[s+1] = n[s+1]**4 * GK 
    gN[s+1] = m[s+1]**3 * h[s+1] * GN 
 
    JK[s+1] = gK[s+1] * (V[s] - EK) 
    JN[s+1] = gN[s+1] * (V[s] - EN) 
    JL[s+1] = gL[s+1] * (V[s] - EL) 
    
    V[s+1] = V[s] + (dt/C) * (-JK[s+1] - JN[s+1] - JL[s+1] + Jext[s+1]) 
   
Jm = JN + JK + JL 
vDot = np.gradient(V,dt)              # dv/dt 
vDot2 = np.gradient(vDot,dt)          # d2v/dt2 
 
# Charge delivered by external current Q [ nC.cm-2] 
Q = simps(Jext,t) 
 
 
#%% CONSOLE OUTPUT 
print(' ') 
print('Charge delivered by Jext  Q = %0.2f nC' %Q ) 
s = time.time() - tStart; print('Execution time = %2.2f' %s)  
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Square pulse stimulus            (flag = 1) 

if flag == 1:    # Pulse   t1 (on) / t2 (off) 

   J0 = 20       # Amplitude of pulse  

   t1 = 0.5; t2 = 1.0  

   N1 = round(t1/dt); N2 = round(t2/dt) 

   Jext[N1:N2] = J0 

 

A square pulse current stimulus of duration 0.5 ms is used as the 

external current source (flag = 1). 

If insufficient charge Q is not transferred to the neuron by the 

external current stimulus, then no action potential is generated 

(figure 4A:  J0 = 12.2 μA.cm-2). If no action potential is fired, then only 

a small rise in the membrane potential occurs and then the 

membrane potential slowly decays back to the resting potential. 

 

There is a threshold, when the external stimulus exceeds some 

critical value an action potential is produced. The threshold for 

the injected current density is about 12.3 μ A.cm-2  (figure 4B). 

The action potential rises more rapidly and to a higher peak 

value when J0 = 20 μ A.cm-2 compared with J0 = 12.4 μ A.cm-2.   

The injected current Jext acts as a bifurcation parameter.  Slight 

variation in Jext near the threshold may or may not evoke an 

action potential. 
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Fig. 4A.  J0 = 12.2 uA    Q = 6.1 nC   Vmax = -64.9 mV    

 

Fig. 4B.  J0 = 12.4 uA    Q = 6.2 nC   Vmax = 5.4 mV    

 

Fig. 4B.  J0 = 20.0 uA    Q = 10.0 nC   Vmax = 25.0 mV    
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If the external stimulus current is greater than some threshold 

value, then an action potential is generated (figure 5).  Figure 5A 

shows a short pulse and figure 5B shows a longer pulse of half 

the width and twice the height of figure 5A pulse. The pulse with 

the greatest amplitude and shortest duration produces the 

action potential which rises most rapidly and with the greatest 

depolarization. 

 
Fig. 5A.  J0 = 16.0 uA    Q = 8.0 nC   T = 0.05 ms   Vmax = 21.4 mV    

 

 
Fig. 5B.  J0 = 8.0 uA    Q = 8.0 nC   T = 1.00 ms   Vmax = 18.7 mV    
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The Action Potential 

Figure 6 shows a typical action potential that is fired due to external 

current pulse. 

 
Fig. 6. Action potential produced by an external current pulse of 

sufficient height and duration. The time course of the membrane 

shows the action potential (positive peak) followed by a relative long 

refractory period where the potential is below the resting potential. 

 

The Gate Variables, conductances and ion current densities 

Figure 7 shows the time variation of the gate variables n, m and 

h.  For the sodium ions Na+, the value of the activation gate m 

rises rapidly to a peak and then rapidly decreases back to zero, 

whereas the inactivation gate, h falls from its steady-state value 

to nearly zero and slowly returns to its steady-state value. The 

activation gate n for potassium rises quickly and then falls slowly, 

with the peak width in the order of 2 ms. 
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Fig. 7. The gate variables n, m and h. 

 

The external current stimulus causes a rise in the membrane 

potential and this results in an increase in the value of m 

(activation gate) and the decrease in the value of h (inactivation 

gate), therefore an increase in the Na+ conductance Nag .  As a 

result, positive sodium ions flow into the cell and raise the 

membrane potential even further. If this positive feedback is 

large enough, an action potential is initiated. At high values of 

Vm, the sodium conductance is shut off due to the factor h. The 

time constant for h is always larger than m. Thus, the variable h 

which closes the channels reacts more slowly to the voltage 

increase than the variable m which opens the channel. On a 
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similar slow time scale as shown by the variation in the activation 

gate n for K+, the potassium K+ current sets in. Since it is a 

current in outward direction, it lowers the potential. The overall 

effect of the sodium and potassium currents is a short action 

potential followed by a negative overshoot (figures 6, 7, 8, 9 and 

10). 

 

The trajectory of the membrane potential is shown in the phase 

portrait plot (figure 8). 

 

Fig. 8.   Phase portrait plot. The membrane potential which equals 

the rest potential is a stable equilibrium point. The time evolution in 

the phase portrait plot is clockwise. Green dot start (t = 0) and the 

red dot a small time increment later.  
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Fig. 9.  Sodium and potassium conductances. 

 

 

Fig. 10.  Ion currents (current into cell is negative and a current out of 

the cell is negative). 
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Fig. 11.   A small negative pulse (duration 0.50 ms and 

height -5.0 μA.cm-2) causes the membrane potential to be more 

hyperpolarized before slowly returning to the resting value.   

 

 

DUAL PULSE STIMULI     (flag = 2) 

if flag == 2:    # Dual pulses 

   J0 = 20       # Amplitude of pulse  

   p = 0.5       # pulse width 

   t1 = 0.5; t2 = t1+p; 1.0; t3 = 7.0; t4 = t3+p  

   Jext[t>t1] = J0; Jext[t>t2] = 0; Jext[t>t3] = J0; Jext[t>t4] = 0 

 

We can compute the membrane potential time evolution when it is 

excited by two identical pulses. The initial external current pulse is 

sufficiently strong to excite a spike. Whether a second spike is 
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generated depends upon the time delay of the second pulse.  A 

second action potential is only produced when sufficient time has 

passed for the membrane voltage to return to nearly its resting 

potential. 

 

Fig. 12A.   Time delay between the two pulses is 3.50 ms (4.5 – 1.0). 

No action potential is generated. 

 

Fig. 12B.   Time delay between the two pulses is 3.60 ms (4.6 – 1.0). A 

second action potential is generated with a lower amplitude. 
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Fig. 12C.   Time delay between the two pulses is 6.00 ms (7.0 – 1.0). A 

second action potential is generated with the same amplitude if the 

delay between the two pulses is long enough. 

Refractoriness is the fundamental property of an excitable medium 

that does not to respond to a stimulus. For a neuron, the refractory 

period is the time interval during which a neuron is incapable of 

repeating another action potential. It is the time for the membrane 

potential to return to a value close to its resting value. From figure 

12A, the refractory period is about 3.50 ms. If the second pulse 

occurs in a time interval less than 3.50 ms, no action potential is 

produced.  

 

Refractoriness occurs, firstly due to the hyperpolarizing spike after-

potential which is lower than the resting membrane potential. Hence, 

more time is needed to reach the firing threshold. Secondly, since a 

large portion of the ion channels are open immediately after a spike, 

and the resistance of the membrane is reduced compared to the 

situation at rest.  
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Fig. 13.  The gates are more closed than open when the second pulse 

arrives which results in the small values of the Na+ and K+ 

conductances. Therefore, the membrane is not depolarized and no 

action potential fires. 
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Multiple current pulses: pulse train    (flagJ = 3) 

if flag == 3:    # Square wave: pulse train 

   J0 = 100     # Amplitude of pulse  

   p = 2         # period [ms] 

   Jext = J0*sin(2*pi*t/p) 

   Jext[Jext>0] = J0; Jext[Jext<0] = 0    

 

You can study the response of the membrane potential to a series of 

square pulses of uniform amplitude. 

 

 

Fig. 14A.     A regular pulse train stimulus excited the neuron. The 

pulse amplitude is 100  A.cm-2 and the period of the stimulus is 2.0 

ms and frequency 0.50 Hz. If the frequency is not too high and the 

amplitude of the pulses is great enough, then a periodic sequence of 

action potentials is generated. 
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Fig. 14B.     A regular pulse train stimulus excited the neuron. The 

pulse amplitude is 100  A.cm-2 and the period of the stimulus is 0.2 

ms and frequency 5.0 Hz. At the higher frequency, not all pulses give 

rise to an action potential. 

 

 

Fig. 14C. If the pulse rate is too rapid, then not all action potentials 

are generated and a regular firing pattern is not established.  Pulse 

train period is 0.1 ms and frequency 10 Hz. 
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Step current input       flag = 4 

if flag == 4: 

    J0 = 30 

    t1 = 5 

    Jext[t>t1] = J0 

We can model the response of the membrane potential to a step 

input. Figure 14 shows the membrane potential for a series of step 

functions with increasing amplitude. 

 

Fig. 15A.  Jext = 4.0  A.cm-2 

 

 

Fig. 15A.  Jext = 30.0  A.cm-2 
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Fig. 15C.  Jext = 5.0  A.cm-2 

 

Fig. 15D.  Jext = 10.0  A.cm-2 

 

 A constant current injection is used to stimulate the neuron. The 

stimuli are switched on at time t = 5.0 ms. If the size of the step is 

less than 5   A.cm-2 then an action potential is not produced. A 

current density stimulus of 5  A.cm-2 produces a set of regular 

spikes. As the size of the step is increased, the frequency of the 

repetitive firing increases but the degree of depolarization 

decreases. If the step size is too great however, a series of spikes is 

not produced. 
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The equations of Hodgkin and Huxley provide a good description of 

the electrophysiological properties of the giant axon of the squid. 

These equations capture the essence of spike generation by sodium 

and potassium ion channels. The basic mechanism of generating 

action potentials is a short in influx of sodium ions that is followed by 

an efflux of potassium ions. Cortical neurons in vertebrates, 

however, exhibit a much richer repertoire of electrophysiological 

properties than the squid axon studied by Hodgkin and Huxley. 

These properties are mostly due to a larger variety of different ion 

channels. 

 

 


