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INTRODUCTION 

A mathematical model is presented for the dynamics between 

tumor cells, normal cells, immune cells, and chemotherapy drug 

concentration. The immune system is designed to detect and kill 

anomalous cells. When this system fails, it results in an uncontrolled 

growth of the tumor cells and so it may be necessary for 

chemotherapy treatment. This minimal model of tumor growth 

considers both the immune response and chemotherapy treatment. 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
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A tumor’s response to treatment depends on many factors, including 

the severity of the disease, the application of the treatment, and the 

strength of patient’s own immune response. Mathematical models of 

tumor growth can be a powerful tool to provide insights into the 

dynamics of tumor growth and treatment through the administration 

of drugs. Such models can play a significant role in the development 

of a better understanding of cancer diseases and various drug therapy 

strategies to fight the disease.  

 

Tumor cells are abnormal cells that divide and grow uncontrollably, 

potentially forming lumps or growths called tumors. These tumors 

can be benign (non-cancerous) and generally do not spread to other 

parts of the body or malignant (cancerous) that can invade nearby 

tissues and spread (metastasis). 

 

Immune cells (white blood cells or leukocytes) are the body's defence 

system against infection and disease. They are produced in the bone 

marrow and circulate throughout the body in the blood and lymphatic 

system. These cells identify and eliminate harmful pathogens like 

bacteria, viruses, fungi, and cancerous cells. 

    

Chemotherapy kills cells through a mass-action dynamic where mass-

action dynamics refers to the principle that the rate of a change is 

directly proportional to the product of the populations or 

concentrations of the reacting substances. 
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Through the construction and analysis of mathematical models, 

researchers can explore the complex interplay among tumor cells, 

normal cells, immune cells, and the surrounding microenvironment. 

This can give an insight into the factors that drive tumor initiation, 

growth, invasion, and treatment resistance. By quantifying these 

interactions, dynamical system models offer a foundation for 

developing targeted and effective therapeutic strategies. 

 

 

MINIMAL MODEL 

The minimal model proposed describes three types of cells and one 

drug concentration: 

N(t)     Normal cell population (normalized N(0) = 1) 

T(t)     Tumor cell population 

I(t)      Immune cell population 

C(t)     Chemotherapy drug concentration (amount of drug at 

           tumor site at time t) 

 

Four non-linear ordinary differential equations are used to represent 

the time rate of change of each of these four variables.  

 

The model’s assumptions used to determine the equations are: 

1. Both tumor and normal cell populations are homogeneous (their 

growth dynamics are the same for all parts of the population) 
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where tumor, and normal cell populations obey logistic 

dynamics. 

2. Immune cells are produced at a constant rate, and have a death 

rate proportional to the number of immune cells.  

3. Tumor cells, immune cells, and normal cells all compete with 

each other for available resources through mass-action dynamics 

in a predator-prey fashion. 

4. It is assumed that the drug is delivered by infusion, and there is 

an instantaneous mixing of drug with plasma, as well as an 

immediate delivery of the drug to the tumor site. The drug kills 

tumor cells, immune cells, and normal cells through mas-action 

dynamics. 

 

The four rates of change equations are solved numerically using the 

Python function odeint.   
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Units for N(t), T(t), I(t) are cells, time t in days and C(t) is a 

dimensionless quantity for the drug concentration and its toxicity. 
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The default model parameters are summarised in Table 1. 

 

Table 1.   Default parameter values 

 r2 = 1.00 day-1      r1 = 1.50 day-1    

Kl = 1.00 cell     K2 = 1.00 cell  

 a1 = 0.20 day-1    a2 = 0.30 day-1     a3= 0.10 day-1 

c1 = 1.00 cell-1.day-1    c2 = 0.5 cell-1.day-1 

c3 = 1.00 cell-1.day-1      c4 = 1.00 cell-1.day-1 

d1 = 0.20 day-1    d2 = 1.00 day-1    

k1 = 0.01 day-1    compromised immune system  (0.01 < k1 < 2)  

k2 = 0.30 cell 

k3 = 1.00 day-1     

s = 0.33 cell.day-1          (0 < s < 0.5) 

 

The units for cells are scaled, so that one unit represents the maximum 

normal cell population in the region of the tumor.  A reasonable 

approximation is that the tumor site contains in the order of 1011 cells. 

Therefore, a scaled population x = 1 and contains 1011 cells. 

 

If one assumes that there about 5x108 cells.cm-3 of tissue at the tumor 

site, then the volume and diameter for a scaled population x are 

 volume =  ( )11 8 3
10 / 5 10 200 cmx x =  
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Thus, when the normal cell population at carrying capacity is K2 = 1 

(N = 1) the number of cells is 1011, the spherical volume of tissue 

encompassing the normal cells is about 200 mL and the 

corresponding diameter is about 7.3 cm. 

 

The clinical detection threshold for a tumor is generally l07 cells. 

Hence the scaled tumor population, its volume, and diameter are 

 T = 10-4   volume = 0.02 cm3   diameter = 0.34 cm 

In a simulation with T(0) = 0.25, then x = 0.25, the number of cells is 

0.25x1011 and its volume is 50 cm3 and diameter is 4 cm which is well 

above clinical detection levels. 

    

The growth of the normal and tumor populations is represented by a 

logistic equation 

 normal cells    2

2

1
N

N r N
K
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= − 

 
       tumor cells  1
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K
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where r2 is the normal cell growth rate, K2 the normal cell carrying 

capacity, r1 the tumor cell growth rate and K1 the tumor cell carrying 

capacity (figure 1). The normal growth rate r2 is normalized (r2 = 1). 

The carrying capacity places a limit on the maximum size of a 

population. For example, if K1 = 1 then tumor diameter is about 7.3 

cm and if K1 = 2 then tumor diameter is 9.2 cm. 
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The logistic equation is a mathematical model that describes how a 

population grows when resources are limited. The logistic equation 

results in a growth curve, where the population initially grows or 

decreases exponentially, then slows down as it approaches the 

carrying capacity, eventually stabilizing around that limit. 

 

 

Fig. 1.   Logistic growth of the normal and tumor cell populations 

where K1= 0.2 (Tumor) and K2 = 1.0 (Normal) with initial populations 

N(0) = 0.4, T(0) = 0.8 and I(0) = 0.1. Growth rates r1 = 1.50 and  

r2  = 1.00. The populations evolve to the carrying capacities K1 and 

K2.   

 

Cells are killed by chemotherapy through mass-action dynamics: 

 Normal cells are killed by chemotherapy 3a C N−  

 Tumor cells are killed by chemotherapy   2a C T−  

 Immune cells are killed by chemotherapy   1a C I−     

 3 1 20 0.50       ia a a a     

The value 0.50 gives an upper bound on the efficiency of a drug in 

killing cells. 
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Competition terms c1, c2, c3, c4    mass-action dynamics: 

Cells destructively competing with each other for resources and space  

 Death of normal cells by tumor cells 4c T N−  

 Death of tumor cells by normal cells 3c T N−  

 Death of tumor cells by immune cells 2c I T−  

  Death of immune cells by tumor cells 1c I T−  

Death rates d1, d2 

 Death rate of immune cells  d1        Death rate of drug  d2      

Immune source rate  s 

 Constant source rate for production of immune cells (constant 

influx of immune cells into tumor site)    0 0.50s  . 

Immune response rate k1 and immune threshold rate k2   

 1 1 2

2 1

k x x

k x+
 

 Immune cells are recruited by tumor cells that leads to a saturation 

effect. The presence of tumor cells stimulates the immune 

response, represented by the positive nonlinear growth term for the 

immune cells. However, the immune system response may not be 

sufficient on its own to completely combat the rapid growth of the 

tumor cell population and the eventual development into a tumor.  

 

The rate to deliver the drug is denoted by the dimensionless variable 

V(t). A goal using drug therapy is to use the optimal drug 
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administration that destroy the tumor cells, and to restore the normal 

cell population with minimal harm to a patient. 

 

SIMULATIONS 

 

1.    Zero tumor cells and zero chemotherapy 

In the absence of any tumor cells T(t) = 0, and drug treatment C(t) = 

0, then, there is a balance between the influx of immune cells, (s = 

0.33) and their deaths (d1  = 0.20), resulting in a long-term immune 

population size of s/d1 = 1.65 cells.  

 

Fig. 2.  Time evolution of cell populations for zero tumor cells and 

zero chemotherapy.      1 20 / 1.65ss ssI s d I I s d= − =  = =  

N(0) = 1.00  T(0) = 0.00  I(0) = 0.10  C(0) = 0.00 

Nf = 1.00  Tf = 0.00  If = 1.65 

volN = 200.00  volT = 0.00  volI = 330.00 

diaN = 7.26  diaT = 0.00  diaI = 8.57 

volumes in mL and diameters in cm 
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2.  Presence of tumor cells stimulates the immune response 

For zero chemotherapy, the presence of tumor cells stimulates the 

immune response represented by the positive nonlinear growth term 

1 2/ ( )k I T k T+ +  and competition between normal cells, tumor cells 

and immune cells lead to the death or inactivation of cells. 

 

With an initially small tumor cell population T(0) = 0.14, then the 

presence of these tumor cells can stimulate the growth of the immune 

cells that results in the complete destruction of all tumor cells. So, in 

this instance, the immune response can destroy the tumor. 

 

 

Fig. 3.   N(0) = 1.00,  T(0) = 0.14,  I(0) = 0.10. 

An initial small tumor cell population will stimulate the production of 

immune cells resulting in the complete destruction of the tumor. All 

three cell populations converge to their steady-state vales 

Nss = 1.00,  Tss = 0,  Iss = 1.65 , tumor diameter = 0.  
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However, it is a completely different story if there is a slightly higher 

initial tumor cell population. No longer is the tumor destroyed by the 

immune cell response. There is a critical initial tumor population 

0.14CT . For an initial tumor cell population T(0) > TC, then all 

three populations will converge to their steady-state values                

Tss = 0.56 > Iss = 0.44   Nss = 0.44 as shown in figure 4. Thus, when 

T(0) > TC a tumor will develop with more tumor cells than normal 

cells and insufficient number of immune cells to kill the tumor cells 

with steady-state cell populations independent of the initial tumor cell 

population provided T(0) > TC (figures 4A and 4B). 

 

 

Fig. 4A.  N(0) = 1.00,  T(0) = 0.15,  I(0) = 0.10. 

               Tumor not destroyed 

      Nss = 0.44,  Tss = 0.56,  Iss = 0.44  

      Tumor diameter   6.0 cm 
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Fig. 4B.    Tumor not destroyed 

                 N(0) = 1.00,  T(0) = 0.50,  I(0) = 0.10. 

         Nss = 0.44,  Tss = 0.56,  Iss = 0.44  

        Tumor diameter   6.0 cm 

 

If the initial tumor population is greater than a critical value 

0.14CT , then the tumor is not destroyed and all three cell 

populations converge to their steady-state values. The steady-state 

values are independent of the initial tumor cell population when 

T(0) > TC 

 

3.   Evolution of cell populations dependence on tumor growth rate 

In the absence of any chemotherapy treatment, whether a tumor is 

destroyed or persists is very dependent on the growth rate of the 

tumor cells, r1. A more aggressive tumor will have a higher growth 

rate and can result in the formation of a tumor. The critical value for 

the tumor growth rate is r1C ~ 1.52. For r1 < r1C or r1 > r1C there is a 

dramatic difference in the response of the system (figure 5).   
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Fig, 5.   T(0) = I(0) = 0.1.  For the larger growth rate (1.53 > 1.52), a 

tumor is created as the immune response is insufficient to destroy all 

the tumor cells.   

  r1 = 1.52   Tss = 0        Iss = 1.65     Nss = 1.00 

r1 = 1.53   Tss = 0.61   Iss = 0.44     Nss = 0.39. 

 

For very aggressive tumors (large r1 values r1 >> rC), then the steady-

state normal cell population becomes very small Nss ~ 0. 

 

A person’s immune response in very important in determining 

whether a cancer will continue to grow. The parameter c2 is the 

proportionality constant for the immune cells killing the tumor cells. 

When the immune cells are less effective in killing tumor cells, it may 

result in the existence of tumor cells and a reduced normal cell 
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population. The system’s response is very sensitive to the value of 

this parameter c2. The fixed point for the steady-state population Nss = 

1.0 shown in figure 6 is unstable. The parameters for figure 6A are r1 

= 1.50 and c2 = 0.48.  Figure 6B shows the cell population when c2 = 

0.47 where Nss = 0.38. For c2 = 0.47 the tumor cell population grow to 

its steady-state value, the immune cell population peaks then falls to 

its steady-state value, and the normal cell population declines to its 

steady-state value. 

 

Fig. 6A.  c2 = 0.48. Immune cells are effective in killing are the tumor 

cells.  Nss = 1.00   Tss = 0   Iss = 1.65   Css = 0.00 

 

Fig. 6B.   c2 = 0.47.  Immune cells do not kill all tumor cells. At 

equilibrium there are more tumor cells than normal cells. The tumor 

diameter has increased from 3.4 cm to 6.2 cm.  

Nss = 0.38   Tss = 0.62   Iss = 0.41   Css = 0.00 
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4. CHEMOTHERAPY   

We have seen that a tumor will develop if the initial cell population or 

its growth rate exceed their critical values. In such cases, the immune 

response if insufficient in destroying the tumor. So, it may be 

necessary to administer chemotherapy to such cancer patients. The 

minimal model can simulate the administration of the drug through 

the variable V in equation 4 for the drug concentration.  

 

Fig. 7.   V(t) = 0, r1 = 1.6, N(0) = 1.00, T(0) = 0.1, I(0) = 0.1. 

No drug treatment. The cell populations N, T and I converge to their 

steady-state values where Tss > Iss > Nss. A tumor exists and there is a 

decline in the normal cell population from its initial value.    

r1 = 1.60   Tss = 0   Iss = 0.37   Nss = 0.31 

 

 

When the drug is given for 10 days (20 to 30) with concentration V = 

3.30, the drug strength and duration is not sufficient to kill all the 

tumors and as a result the three populations converge to their steady-

state values. However, the slight the increase in the initial value of V 

to V(0) = 3.40 will result in the destruction of the tumor (figure 8).  
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Fig. 8A. Drug concentration administered for 10 days (20 to 30 days) 

                  Drug delivered = 33 units where the drug delivered is equal 

to the area under the curve. 

 

 

Fig. 8B.   The drug delivery is insufficient to destroy the tumor. 

                  V(t) = 3.30   dt = 10    Drug delivered = 33 units 

 r1 = 1.60   Tss = 0.69   Iss = 0.37   Nss = 0.31 

 

 

Fig. 8C.    The drug delivery destroys the tumor. 

              V(t) = 3.40   dt = 10    Drug delivered = 34 units    

               r1 = 1.60   Tss = 0   Iss = 1.65   Nss = 1.00  
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For the case when V(t) = 3.30 and duration of 10 days results in a 

tumor. But if the duration is increased by one day (11 days) then the 

tumor will be destroyed.   

 

 

Fig. 8D.    The drug delivery destroys the tumor. 

                  V(t) = 1.504   dt = 11     Drug delivered = 36 units    

                   r1 = 1.60   Tss = 0   Iss = 1.65   Nss = 1.00  

 

Again, we see that a small increment in a control parameter may 

result in a very different response of the system. 

 

 In the treatment of a cancer, it is best to use the smallest amount of a 

drug to kill all the tumor cells and to protect the normal cells and 

reduce any side effects. One may think of using a small dose of the 

drug given for repeated short periods of time. But this approach is not 

necessarily successful. Consider the case when a drug is given for 5 

days and then zero drug for 5 days and this sequence done four times   

( )0 2.90, 5V dt= =  as shown in figure 9. This strategy is not 

successful in killing all the tumor cells. By comparing figure 9 with 
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figure 8, we can conclude that a single dose of appropriate 

concentration and duration is more successful in destroying the tumor 

than the repeated dose given in short time intervals. During the 

administration the number of tumor cells decreases. But as soon as the 

administration of the drug is stopped, the tumor cell numbers again 

increase. 

 

Fig. 9A. Drug delivered = 58 units. 

Drug administered four times: V = 2.90 for 5 day and no drug V = 0 

for five days. 

 

 

Fig. 9B.  Tumor not destroyed.  Drug delivered = 58 units. 

 

Short bursts of lower concentration drug administered does not kill 

the tumor cells, even though the amount of drug delivered is 58 units 

compared with 36 units for the case shown in figure 8D.    
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Fig. 9C.  Tumor destroyed.   Drug delivered = 60 units.   

 

The amount of drug delivered that results in the killing of all the 

tumor cells is 60 units which is significantly higher than the single 

large administration of the drug of 36 units as shown in figure 8D.    

 

 

The strategy of administering repeated small doses in short periods 

does not result in the destruction of the tumor. At first, cancerous cells 

started growing (growth period) and after drug delivery the number of 

tumor cells is reduced (death period) and at the end when the drug 

delivery is stopped tumor cells start growing again (dormancy 

period). 

 

A standard protocol is to administer a drug for a short time, on the 

order of several hours with periodically repeated treatments every few 

weeks (pulsed chemotherapy). We see from the minimal model that 

this is not necessarily a reliable method for the system to evolve to be 

tumor free.  In cases of a less aggressive tumor growth rate or a 

slightly stronger immune system, then chemotherapy treatment may 
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be sufficient to push the system to the desirable tumor-free 

equilibrium point. This means that even after the medicines are turned 

off, the tumor burden will continue to decrease toward zero. 

Otherwise, with more aggressive tumor growth or a weaken immune 

response then the system can be driven to the large tumor equilibrium 

point.  

 

BIFURCATION DIAGRAMS 

We can find the steady values for N, T, I, and C which correspond to 

fixed points by solving the set of equations 5, 6, 7, and 8. The steady-

state values (fixed points) are Nss, Tss, Iss and Css. The trivial case 

where the steady-state values are zero is ignored. 
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We want to find the dependence of the steady-state values as a 

function of a control variable such as r1. Solving this set of equations 

algebraically is difficult because at a bifurcation point, a dramatic 

change occurs in the steady-state values for a small increment in the 
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control parameter.  To overcome this problem, the ODEs for the 

system are solved for the time evolution of the normal, tumor and 

immune cells. The time span is chosen large enough for the 

populations to reach their steady-state values. Then, the steady-state 

values are set equal to the last cell populations computed. 

 

The time evolutions of the cell populations are very dependent on the 

magnitude of the tumor cell growth rate, r1. Figure 10 shows the 

bifurcation diagram for the tumor cell growth rate, r1 which there is 

no chemotherapy treatment.  

 

Fig. 10.  Bifurcation diagram for the tumor cell growth rate, r1. No 

chemotherapy treatment V(t) = 0. 

 

The bifurcation point is r1 ~1.52. For growth rates greater then 1.52, 

then the steady-tumor cell population becomes greater than either of 

the normal cell or immune cell populations  

1 0 1 0.30ss ss ssr N T I→ → → →   
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For r1 > ~1.52 the immune response is insufficient in controlling the 

growth of the tumor and protecting the normal cells. 

 

The tumor can be treated with chemotherapy. The success of the 

treatment depends on the tumor growth rate and the magnitude and 

duration of the chemotherapy treatment as shown in figure 11. The 

bifurcation point rC increases with the magnitude of the drug 

concentration or a longer administration time interval.  For growth 

rates near the bifurcation point rC the success of destroying tumor is 

very sensitive to the magnitude of the drug concentration and 

administration time. As shown in figure 11, the tumor is either 

destroyed and the normal cell population protected, or the tumor cells 

dominate and the normal and immune cell populations evolve to small 

populations. 

 

Fig. 11A.  V = 4.00, dt = 10 (20-30 days)   rC ~ 1.80. 
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Fig. 11B.  V = 4.00, dt = 40 (20-60 days)   rC ~ 1.85. 

 

 

Fig. 11C.  V = 8.00, dt = 10 (20-30 days)   rC ~ 1.95. 

 

How effective the immune cells are in killing tumor cells is governed 

by the parameter c2 in equation 2 for the rate of change of the tumor 

population ( )2c I T− .  Figure 12 shows the bifurcation diagram for the 

steady-state normal, tumor and immune cell populations as a function 

of the immune parameter c2. 
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Fig. 12A.  Steady-state response of the system as a function of the 

immune parameter c2 for zero chemotherapy. The bifurcation value of 

c2 is ~0.48. 

 

 

Fig. 12B.   Steady-state response of the system as a function of the 

immune parameter c2 with chemotherapy 

( )20 60 1 otherwise 0t V V  = = . The bifurcation value of c2 is 

~0.40 which is lower than the case for zero chemotherapy.  
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CONCLUSIONS 

 

The minimal model proposed can be used effectively for studying the 

behaviour of cancerous cells in presence of chemotherapy. Graphical 

representation rather than algebraic means is one of the features of the 

minimal model. Whether a tumor is destroyed or not can be 

investigated by changing any of the model’s constants many of which 

act as bifurcation parameters. Changes in the magnitude and time 

sequence of administering the drug is of parament importance in 

determining if the tumor cells are destroyed or multiple. There is a 

possibility that the minimal model may be used to find optimal and or 

better outcomes by modelling the administering medications in ways 

that have not been previously employed clinically. Mathematical 

modelling provides a theoretical framework to predict the long-term 

treatment outcomes, which is difficult to be realized by clinical 

studies. 

 

The predictions of the model highlight the significance that a small 

change in a model parameter can have a dramatic effect upon the time 

evolution of the normal cell, tumor cell and immune cell populations. 

The model indicates that a short high intensity drug treatment may be 

superior in controlling a tumor than repeated low drug dose 

treatments and this strategy may deliver less drug in total to a patient.  
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