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DOING PHYSICS WITH PYTHON 

NEUROSCIENCE 

HINDMARSH – ROSE MODEL 

BURSTING BEHAVIOUR OF NEURONS 

 

Ian Cooper 

Please email me any corrections, comments, suggestions or 

additions:   matlabvisualphysics@gmail.com 

 

DOWNLOAD DIRECTORIES FOR PYTHON CODE 

Google drive 

GitHub 

 

ns25_HR.py 

 Uses odeint function to solve two / three coupled first order 

differential equations which describe a bursting neuron. For different 

models, it may be necessary to make small changes to the Python Code. 

 

ns25HR_bifurcation.py   ns25_HR_bifurcationR.py 

Bifurcation diagrams for ISI (inter-spike-interval) 

  

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/python
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INTRODUCTION 

The Hindmarsh–Rose (HR) model is a three-dimensional model and 

can reproduce all kinds of dynamic behaviours under different 

parameter values, which can accurately describe the voltage and 

current change on the nerve fibre. An analysis of the dynamic 

behaviour of the HR model can give a comprehensive understanding 

of the characteristics and response of a neurone.  

 

The nervous system has very strong nonlinear characteristics, in 

particular, the system dynamics and its topological structures are 

sensitive to the parameter variation, the external input and the 

dynamic environment. Under different sets of parameter values, the 

HR model can generate different nonlinear behaviour that includes 

static, tonic spiking, periodic bursting and chaotic behaviour and so 

on. 

 

NEURON BURSTING MODEL 

The Hindmarsh - Rose model considers the following system of three 

coupled ODEs to generate action potentials 
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where x is the membrane potential, y is the fast current that associated 

with the gating dynamics of 𝑁𝑎+ or 𝐾+ ions, z is the slow current 

corresponding to the dynamics of calcium 𝐶𝑎2+ channel, xR resting 

potential, Iext is the external current stimulus. The variable y is known 

as a recovery variable, and z a recovery variable called an adaptation 

current. The constant xR is determined from the x-y coordinates (xC1, 

yC1) of the stable equilibrium point (left most) of the model for I(t) = 0 

and without adaption (r = 0). The external current stimulus pulse Iext 

(t) is specified its height and duration.  

 

If r = 0 which gives 0z = , then only two coupled ODEs are necessary 

to describe the system. 
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This model is similar to the Fitzhugh-Nagumo model except that the 

time rate of change of the recovery variable y  includes a quadratic 

term rather than a linear term in x. 

 

Figure 1 shows an intracellular recording of a neuron in the visceral 

ganglion of the small snail, lymnaea stagnalis when it was stimulated 

by a short depolarizing current stimulus. After the current excitation, 

a series of action potentials are generated (bursting). The cell is 

usually silent, but when depolarized for about 100 ms, it spikes 
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several times and then continues to spike even after the cessation of 

the current stimulus before the membrane potential falls to a value 

less than its initial value. 

 

 

Fig. 1.  Intracellular recording of a neuron in the visceral ganglion of 

the small snail, lymnaea stagnalis. [Hindmarsh & Rose].  

 

The neuron bursting model can be used to simulate a bursting neuron 

and the results of the model can be compared with recordings of 

neurons to external current stimuli as shown in figure 1. The set of 

equations 1 are solved in Python (Spyder) using the odeint function. 

The solution of the set of equations 1 give the time evolution of the 

three variables: membrane potential x, recovery variable y and the 

adaptation current z in response to an external current stimulus Iext. 
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The firing behaviour of a neuron can be better understood more easily 

by examining the quiver x-y phase portrait which shows the vector 

field by x-y arrows of unit length, the x-y trajectory, the x and y 

nullclines, the equilibrium (critical) points xC and yC, the initial 

conditions x0 and y0 and the final values for x(t) and y(t). The 

simulation results are also shown in streamplots. 

 

The nullclines for x and y are obtained from equation 1 by setting 

0x =  and 0y =   

     x-nullcline (cubic function in x) 

         (2A)      2 3
3 0exty x x I+ − + =  

    y-nullcline (quadratic function in x) 

        (2B)       
2

1 5 0x y− − =  

 

The critical points xC and yC are the points of intersection of the two 

nullclines where 0x =  and 0y = . The critical points are found by 

finding the roots of the polynomial 

              
3 2 2

2 1 0 1 5C C ext C Cx x I y x+ − − = = −  

 

There are three equilibrium points, the stable, saddle, and unstable 

shown in figure 2 when Iext = 0 and z(t) = 0. The x-nullcline is a 

function of Iext(t). When Iext(t) changes, the position of the x-nullcline 

change in the phase portrait.  So, the nature and location of the critical 

points depends on the external current stimulus. 
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The stability of an critical point in a dynamical system can be 

determined by analysing the eigenvalues of the Jacobian matrix 

evaluated at that point. If all eigenvalues have negative real parts, the 

equilibrium is stable (attracts nearby trajectories). If at least one 

eigenvalue has a positive real part, the equilibrium is unstable (repels 

nearby trajectroies). The imaginary parts of the eigenvalues can 

indicate oscillatory behaviour around the equilibrium.  

Negative Real Parts 

If all eigenvalues of the Jacobian have negative real parts, the 

equilibrium point is asymptotically stable. This means that any small 

perturbation from the equilibrium will be damped out over time, and 

the system will return to the equilibrium.  

Positive Real Parts 

If at least one eigenvalue has a positive real part, the equilibrium is 

unstable. This indicates that some perturbations from the equilibrium 

will grow over time, and the system will move away from the 

equilibrium.  

Zero Real Parts 

If some eigenvalues have a real part of zero, the stability analysis 

using the Jacobian is inconclusive. Further analysis using higher-order 

terms or other techniques may be needed to determine stability.  
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Complex Eigenvalues 

Complex eigenvalues with non-zero real parts indicate oscillatory 

behaviour around the critical points. The sign of the real part 

determines whether the oscillations decay (stable) or grow (unstable).  

 

Consider a system of differential equations: 

           dx/dt = f(x, y) 

           dy/dt = g(x, y) 

 

To analyse the stability of a critical point (xC, yC), by first compute the 

Jacobian matrix  

 

,

/ /

/ /
C Cx y

df dx df dy
J

dg dx dg dy

 
=  
 

 

Then, we find the eigenvalues of J(xC, yC) and determine the stability 

based on their real parts.  
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SIMULATIONS 

 

Iext = 0 response of HR system             ns23HR.py 

Assume that the HR system is disturbed from its equilibrium and any 

external current stimulus becomes zero. Then the HR system will 

evolve to the stable fixed point as shown in the following figures. 

 

Figure 2 shows the variety of plots that are used to analyse the HR 

mode when Iext = 0. A summary of the model parameters is displayed 

in the Console Window. 

 

Model parameters: r = 0.0020  s = 4.0000   I0 = 0.0000  

Initial values: x0 = 1.5000    y0 = 0.0000   z0 = 0.2000 

Simulation time: t2 = 1000  

   

Critical values and Eigenvalues 

xC = -1.618    yC = -12.09 

eV =  [-18.488  -0.075] 

STABLE 

  

xC = -1.0    yC = -4.0 

eV =  [-10.099   0.099] 

UNSTABLE 

  

xC = 0.618    yC = -0.91 

eV =  [0.781+1.734j 0.781-1.734j] 

Unstable: osc growth 
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Fig. 2A.   Time evolution of the membrane potential x (I = 0).  

 

 

 

Fig. 2B.   Time evolution of the recovery variables y and z (I = 0). The 

HR system evolves to the stable critical point (-1.618, -12.090, 0). 
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Fig. 2C.  x – y phase portrait (streamplot)   I = 0.  

 

 

 

Fig. 2D.  x – y phase portrait (quiver plot)   I = 0. After the initial orbit 

around unstable critical point, the trajectory is towards the stable 

critical point. Blue curve is the x-nullcline (cubic) and the red curve 

is the y-nullcline (parabolic). Green dot (initial conditions), black 

dots show the critical points. For I = 0 there are three fixed points and 

the stable fixed point is (-0.168, 12.090) 
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Fig. 2E.   [3D] trajectory. Green dot shows the start of the trajectory 

( )(0), (0), (0)x y z . 

 

 

Fig. 2F.  Phase portrait plots. Green dot (initial conditions). 
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For the case in which Iext(t) = 0, there are three critical points. The 

critical point at ( )1.62, -12.09C Cx y= − =  is a stable. The critical 

point at ( )0.618, 0.910C Cx y= + = −  is unstable (oscillating growth). If 

the initial conditions are set near this equilibrium point, the x-y 

trajectory then it will be attracted to the limit cycle surrounding this 

unstable critical point and the neuron will fire repetitively even 

without any external current stimulus (figure 2G).  

 

 

Fig. 2G. The neuron can fire repetitively even without any external 

current stimulus. 
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The critical point at ( )1.00, -4.00C Cx y= − =  is a saddle point. If the 

initial conditions are set near the saddle point, then the x-y trajectory 

will either be attracted to the limit cycle and a spike train will occur or 

be attracted to the stable critical point and the neuron will not fire 

(figure 2H).

 

 

Fig. 2H.   Time evolution plots for the current stimulus Iext = 0, 

adaptation current z = 0  (r = 0). Thus, the phase space is divided into 

two regions. Depending on the initial conditions, the trajectory will be 

attracted to the limit cycle and the cell fires continuously or the 

trajectory is deflected to the stable equilibrium point and no firing 

occurs. 
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Square pulse current stimulation 

 

The model parameters were chosen so that the neuron does not fire 

for zero current stimulus. In this case there are three critical points, 

one stable and two unstable. 

Model parameters: r = 0.0010    s = 1.0000 

External current stimulus: I0 = 0.0000 width DT = 20 

Initial values: x0 = 0.5000    y0 = -6.0000   z0 = 0.0000 

Simulation time: t2 = 200  

  Critical values and Eigenvalues 

xC = -1.618    yC = -12.09   eV =  [-18.488  -0.075] 

STABLE 

  

xC = -1.0    yC = -4.0   eV =  [-10.099   0.099] 

UNSTABLE 

  

xC = 0.618    yC = -0.91   eV =  [0.781+1.734j 0.781-1.734j] 

UNSTABLE: osc growth 
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Fig. 3A.  Response of HR system when Iext = 0. 

 

Model parameters: r = 0.0010    s = 1.0000 

External current stimulus: I0 = 0.2500 width DT = 30 

Initial values: x0 = 0.5000    y0 = -6.0000   z0 = 0.0000 

Simulation time: t2 = 200  

 

Critical values and Eigenvalues 

xC = (-1.341+0.179j)    yC = (-7.835+2.403j) 

eV =  [-1.4345e+01+2.467j -4.0000e-03+0.05j ] 
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STABLE: osc decay 

xC = (-1.341-0.179j)    yC = (-7.835-2.403j) 

eV =  [-1.4345e+01-2.467j -4.0000e-03-0.05j ] 

STABLE: osc decay 

xC = (0.683+0j)    yC = (-1.33+0j) 

eV =  [0.849+1.846j 0.849-1.846j] 

UNSTABLE: osc growth 

 

An intracellular recording of a neuron in the visceral ganglion of the 

small snail lymnaea stagnalis is shown in figure 3B. In the HR model 

it is not entirely possible to the model variables to biological 

quantities. But the model can be used to gain insights into bursting 

behaviour. By carefully selecting the model parameters, the spiking 

pattern of the snail (figure 3B) can be reproduced when a small 

external current square pulse is applied to the system. 
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Fig. 3B.  When the adaption current is added to the model, the 

response is an isolated burst of action potential and the membrane 

potential has similar characteristics of the intracellular recording of a 

neuron in the visceral ganglion of the small snail lymnaea stagnalis. 

 

The short current pulse results in exciting the neuron with the x-y 

trajectory attracted to the limit cycle centred on the single unstable 

critical point (0.683, -1.330). The neuron fires during the time of the 

pulse and continues to fire briefly after the end of the pulse stimulus 

before the hyperpolarization causes the trajectory goes to the zero 

current stable critical point (-0.618, -12.090). 



18 
 

  

 

 

Fig. 3C.   Phase portrait plot and time evolution plots. The neuron is 

stimulated by a current pulse of height 0.25 and duration 30.  

 

If the current stimulus increases, then x-nullcline will move down and 

move up when the current stimulus decreases. So, if the current 

stimulus changes with time, this may result in a transition between 

one, two or three critical points and cause different firing patterns. 
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For an increasing current stimulus, the phase point moves into the 

limit cycle and each time an action potential occurs, the adaptation 

current z is incremented and the x nullcline will be displaced upward 

on successive cycles. The firing rate will decrease as the x nullcline 

and y nullcline become closer together at the saddle point 

( )1.00, 4.00C Cv w= − = −  until the two nullclines cross each other 

and the firing stops and the phase point slowly moves downward in 

the narrow channel between the x nullcline and the y nullcline towards 

the stable equilibrium point ( )1.62, 12.09C Cv w= − = − . This slow left 

and downward movement of the phase point gives rise to the 

hyperpolarizing of the membrane potential. After a long time, the 

adaptation current z will relax back to zero and the final membrane 

potential x will move the stable critical point. 
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Fig. 3D.  Time evolution of x, y and z as a function of I0. 
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Fig. 3E. Phase portraits. As the current increases, the x-nullcline 

moves down.  
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Iext = 3.25    Bursting behaviour           ns25HR.py 

The chaotic behaviour of the HR system is shown by numerical 

analysis in different regions of the parameters space by time series 

and phase portraits, and bifurcation diagrams. 

Console Summary 

Model parameters: r = 0.0020  s = 4.0000  I0 = 3.2500  

Initial values: x0 = 0.0000  y0 = -15.0000  z0 = 0.2000 

Simulation time: t2 = 4000  

Critical values and Eigenvalues 

xC = (-1.58+1.081j)    yC = (-5.637+17.078j) 

eV =  [-14.327+16.474j  -0.134 +0.259j] 

Stable: osc decay 

xC = (-1.58-1.081j)    yC = (-5.637-17.078j) 

eV =  [-14.327-16.474j  -0.134 -0.259j] 

Stable: osc decay 

xC = (1.16+0j)    yC = (-5.725+0j) 

eV =  [0.962+2.784j 0.962-2.784j] 

Unstable: osc growth 

time span for plots: 2400.0 --> 4000.0 

 

An important phenomenon in neuron activity is the transition between 

spiking and bursting. Spiking is represented by a generation of action 

potentials, while bursting is represented by a membrane potential 

changing from resting to repetitive firing state. We can see these 

phenomena looking at time series and phase portraits, but bifurcation 

diagrams do not give any information on this ‘fast – slow’ motion. 
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Fig, 4A.   Time evolution plot of the membrane potential x (transient 

fluctuations removed). The rapid spiking corresponds to the fast 

motion and the slow motion to the time interval between the burst of 

spiking. 

 

 

Fig, 4A. Time evolution of the recovery variables y and z. 
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Fig. 4C.   x-y phase portrait (streamplot). The black dot shows the 

single critical point (intersection of the x nullcline and the y nullcline). 

The green curve shows the phase portrait orbit and the green dot the 

initial conditions. 

 

 

Fig. 4D.   x-y phase portrait (quiver plot).  
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Fig. 4E.  [3D] plot of the (x, y, z) orbit in the time interval 

from 2400 to 4000. The fast dynamics is the spiking part of 

time series while slow dynamics is the resting part. 

 

 

Fig. 4F.   Phase portrait plots. The fast dynamics corresponds 

to the right part of the attractor, the part where we observe 

spirals, while slow dynamics is on the left of the figures. 

 

 



26 
 

BIFURCATION DIAGRAMS 

In the dynamics of neurons, the location of bifurcation values is 

important to determine the transition between a quiescent state and an 

oscillatory one, and also between different kinds of oscillatory 

motion. A bifurcation corresponds to a qualitative change of the 

information transmitted through the axon of the neuron. 

Dynamic behaviours of the HR model as a function of 

external current stimulus Iext                           [Chen] 

HR model is capable of reproducing all the dynamic behaviours 

exhibited in real biological neuron cells. The external stimulus Iext is 

the control parameter ( )1 4extI  . The other values are: 

  r = 0.005    s = 4.0    xR = -1.6    x(0) = 0.1   y(0) = 1.0   z(0) = 0.2 

 

By varying the parameter I, the membrane potential x presents 

different state characteristics. Different bursting patterns as described 

by the membrane potential x are shown in figure 5 as the external 

current stimulus is increased. 

 

When 𝐼ext =1.5, then the neuron produces regular bursting (single-

cycle bursting). When increasing Iext to 1.8, 2.3, 2.8, the system 

exhibits another kind of regular bursting state: period-doubling, 

period-3 and period-4 bursting behaviours in turn. For Iext = 3.2, the 

system becomes chaotic and the topological stability is changed. For 
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Iext = 3.58, the system returns to a stable single-cycle bursting state, 

with a higher spike rate than for 𝐼ext =1.5. In both instances, the 

spiking is relatively regular indicating that the corresponding firing 

process can be relatively stable. 
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Fig. 5. Time response of membrane potential for different external 

current stimuli.    ns25HR.py 

 

The interspike interval (ISI) is one of the most used physiological 

indicators. It thought that information may be carried by ISI 

sequences of neuronal firing and some neurons encode information 

through chaotic ISI sequences. Fring patterns of neurons can be 

divided into periodic and aperiodic as shown in the bifurcation 

diagram (figure 6) of the ISI as a function of the external current 

stimulus which ranges from 1.0 to 4.0.  

 

The bifurcation diagram (figure 6) indicates that the dynamic 

characteristics of the HR system shown by the interspike interval 

sequence is consistent with the time evolution of the membrane 

potential (figure 5). 



30 
 

 

Fig. 6.  Bifurcation diagram for ISI, control variable is the external 

current stimulus Iext. 

 

Starting from I = 1.0, the HR model experiences period-1,2,3,4 

bursting state as the current stimulus increases to about 3.2. In the 

range 3.2 < I < 3.5, the ISI sequence becomes unstable and enters a 

chaotic state. When I > 3.5 the ISI sequence returns to a stable single-

period state. We can conclude that, the system dynamics and topology 

of the HR model become more and more complex with the increase of 

parameter I at first, and when it reaches to a critical point, the system 

reverts back to a simple state. During this process, the topological 

structure of the system changes from stable to unstable and then to 

stable.  
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Dynamic behaviours of the HR model as a function of recovery  

The recovery variable r is another important parameter, which is 

related to the calcium 𝐶𝑎2+ concentration and is significant to many 

neurological disorders. Different value of r can induce different firing 

patterns of the HR model. We can take r as the control parameter, and 

fix the external current stimulus at I = 3.0, while all the other 

parameters are kept as the same as mentioned in previous section. 

With the variation of r from 0.005 to 0.050, different dynamic 

behaviours of the HR neural system are observed. The initial state is 

𝑥0 = 0.10, 𝑦0, = 1.00, and z0 = 0.20. Figure 7 shows the time evolution 

of the membrane potential x for a set of r values and figure 8, the 

bifurcation diagram with r as the control variable. 
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Fig. 7.   Time evolution of the membrane potential x as a function of 

the recovery variable r.           ns25HR.py 

 

Figures 7, and 8 show that the HR system has a rich dynamic 

behaviour as the recovery variable r changes. The state is unstable 

and chaotic at the beginning for r < ~0.006 and it gradually becomes 

periodic bursting period-4 state when 𝑟 ~0.007 and periodic-2 state 

when 𝑟 ~ 0.020). It becomes period-1 state when 0.038 < r < 0.05. In 

addition, the system topology and stability also change accordingly 

from unstable chaotic to regular stable periodic state, which can be 

seen from the ISI bifurcation diagram (figure 8). 
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Fig. 8.   Bifurcation diagram of ISI as a function of the recovery 

variable r with constant current I = 3.00.   ns25bifurcationR.py 

 

CONCLUSION 

The bursting neuron model only gives a qualitative explanation of the 

bursting behaviour of real neurons and it may be difficult to relate 

model parameters to biological features. However, the model does 

provide insights into the behaviour of why neurons can exhibit 

bursting patterns. 
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