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DOWNLOAD DIRECTORIES FOR PYTHON CODE 
 
 Google drive 
 

 GitHub 
 

 

OP001.py   OP002.py   OP003.py 

Computation of the integral of functions of the form f(x) and  

f(x,y) using Simpson’s 1/3 rule. The code can be changed into a 

function. 

 

 

COMPUTATION OF ONE-DIMENSIONAL INTEGRALS 
 

We want to compute a number expressing the definite integral 

of the function f(x) between two specific limits a and b 

 

(1) ( )d
b

a
I f x x=   

 

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/python
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The evaluation of such integrals is often called quadrature. 

In Python we can consider two approaches to evaluate a definite 

integral (equation 1). The library from scipy import integrate is 

required.  Integration of a function using the functions 

1. quad 

2. simps for sampled data using Simpson’s rule. 

 

Steps: 

• Define the function and its limits 

• Use the function quad or simps 

 

To illustrate how to compute the integral a number of examples 

will be given. Also, it is often a good idea to plot the graph of 

the function f(x). 

 

Example 1    OP003.py 

/ 2

0
cos( )dI x x


=        ( ) cos( ) 0 / 2f x x a b = = =       

 1.000000exactI = … 

Using quad function returns integral value and error estimate 

 Iquad = 0.9999999999999999 1.1102230246251564e-14 

Using simps function 

 Isimps = 1.000000000004289    number of sample N = 299 
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Plot:  cos(x) for x = 0 to x = / 2 .  

 

Using Simpson’s rule: A major problem that arises with non-

adaptive methods is that the number N of partitions of the 

function required to provide a given accuracy is initially 

unknown. One approach to this problem is to successively 

double the number of partitions, and compare the results as the 

number of partitions increase. 

 

Python code   op003.py 

import numpy as np 

from numpy import pi, sin, cos, exp, linspace  

from numpy.linalg import eig 

from scipy.integrate import odeint, quad, dblquad, simps 

from scipy import pi, sqrt 

import matplotlib.pyplot as plt 

import time 

from mpl_toolkits.mplot3d import axes3d 

import sympy as sym 

def func(x): 
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    f = cos(x) 

    return f 

# >>>>> Inputs: Grid points, limits 

N = 299 

a = 0; b = pi/2 

# function f(x) 

x =linspace(a,b,N) 

f = func(x) 

# Integrate function using quad 

Iquad, Ierr = quad(func,a,b) 

print(Iquad,Ierr) 

# Integrate function using simps 

Is = simps(f,x) 

print(Is) 

# Plot function 

plt.rcParams['font.size'] = 12 

plt.rcParams["figure.figsize"] = (6,3) 

 

# Figure 1    t vs x 

fig1, axes = plt.subplots(nrows=1, ncols=1) 

axes.set_xlabel('x',color= 'black',fontsize = 12) 

axes.set_ylabel('f',color = 'black',fontsize = 12) 

axes.xaxis.grid() 

axes.yaxis.grid() 

xP = x; yP = f 

axes.plot(xP, yP,'b',lw = 2) 

fig1.tight_layout() 

# fig1.savefig('a1.png')  
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Example 2       op003.py 

/2 2 2

0
d ( ) 0 / 2 1

j x j x
I e x f x e a b j


+ +

= = = = = −             

 Iexact = 7.38905609893065 + 7.3890560989306495j 

Using quad function returns integral value and error estimate 

 Iquad = 7.38905609893065 8.203500211279747e-14 

quad function only returns real part 

 

Using simps function (number of sample N = 299) 

 Isimps = 7.389056098962341+7.389056098962339j 
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SYMBOLIC [1D] INTEGRATION 

Integrals can be evaluated symbolically. You need the library 

import sympy as sym to use any of the symbolic tools. 

 

A good reference is 

https://scipy-lectures.org/packages/sympy.html#integration 

 

Code from op003.py 

#%%  Symoblic integration: select function by removing # 

x = sym.Symbol('x') 

y = sym.Symbol('y') 

 

# y = 6 * x ** 5 

# y = sym.sin(x) 

# y = sym.log(x) 

# y = 2 * x + sym.sinh(x) 

sym.integrate(y, x) 

 

# Highlight the code and use F9 to execute the code 

# It is possible to compute definite integral: 

# y = x**4;  a = -1; b = 1; sym.integrate(y, (x, a, b)) 

# sym.integrate(sym.sin(x), (x, 0, sym.pi)) 

# sym.integrate(sym.cos(x), (x, -sym.pi / 2, sym.pi / 2)) 

# Also improper integrals are supported as well: 

# sym.integrate(sym.exp(-x), (x, 0, sym.oo)) 

# sym.integrate(sym.exp(-x ** 2), (x, -sym.oo, sym.oo)) 
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[2D], surface, double, integration 

( , ) ( , )
y x

y x

b b

A a a
I f x y dA I f x y dx dy= =    

 

We want to compute the value of a definite integral of the 

function f(x,y) between two specific limits (ax, bx) and (ay, by)  

 ( , )
y x

y x

b b

a a
I f x y dx dy=    

 

A very practical and versatile way to compute [2D] integrals is 

using a [2D] form of Simpson’s 1/3 rule.  

 

Simpson’s 1/3 rule 

This rule is based on using a quadratic polynomial 

approximation to the function f(x) over a pair of partitions.  N-1 

is the number of partitions where N must be odd and  

x  h = (b – a) / (N-1). The integral is expressed below and is 

known as the composite Simpson’s 1/3 rule. 

 

( ) 1 2 4 2 3 5 14( ... 2( ... )
3

N N N

h
I f f f f f f f f− −= + + + + + + + + +  

 

Simpson’s rule can be written vector form as 

 
T

3

h
I = c f  

where    1 21 4 2 4 ... 2 41 and ... Nf f f= =c f .  

c and f are row vectors and fT is a column vector. 
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Simpson’s [2D] method 

 

The double integral 

  ( , )
y x

y x

b b

a a
I f x y dx dy=    

can be approximated by applying Simpson’s 1/3 rule twice – 

once for the x integration and once for the y integration  

  x-values:   1 2 3 c N
x x x x x  

  y-values:   1 2 3 c N
y y y y y  

 

The lower and upper bounds determine the size of the partitions 

  
1 1

y yx x
x y

b ab a
dx h dy h

N N

−−
 =  =

− −
 

 

The N x-values and N y-values form a two-dimensional grid of N 

x N points. The function f(x,y) and the two-dimensional 

Simpson’s coefficients are calculated at each grid point. Hence, 

the function f(x,y) and the two-dimensional Simpson’s 

coefficients can be represented by N x N matrices F and S 

respectively. 
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The Simpson’s coefficient matrix S for N = 5 is  

 

  

 

 

 

 

 

 

 

 

 

 

                   1      4     2      4     2     4      2     4       1 
       4    16     8    16     8    16     8    16     4 
       2      8     4      8     4      8     4     8       2 
       4    16     8    16     8    16     8    16     4 
       2      8     4      8     4      8     4      8      2 
       4    16     8     16     8   16     8    16     4 
       2      8     4       8     4     8     4      8      2 
       4    16     8     16     8   16     8    16     4 
       1      4     2       4     2     4     2      4      1 
 

Therefore, the two-dimensional Simpson’s rule which is used 

to estimate the value of the surface integral can be expressed as 

 

 ( )
1 1

F S
9

N N
x y

mn mn

m n

h h
I

= =

 
=  
 

  

 

 

 

1 x 1 = 
1 

4 x 1 =   
4 

2x1 = 
2 

4x1 =  
4 

1x1 = 
1 

1 x 4 = 
4 

4 x 4 = 
16 

2x4 = 
4 

4x4 = 
16 

1x4 = 
1 

1 x 2 = 
8 

4 x 2 =   
8 

2x2 = 
4 

4x2=   
8 

1x2 = 
1 

1 x 4 = 
4 

4 x 4 = 
16 

2x4 = 
4 

4x4 = 
16 

1x4 = 
1 

1 x 1 = 
1 

4 x 1 =   
4 

2x1 = 
2 

4x1 =   
4 

1x1 = 
1 
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We include a mask matrix M (NxN) which has elements equal to 

1 or 0 only. The mask matrix M is used where the integration is  

not over a rectangular area defined by the limits ax, bx, ay and by. 

The integral then becomes 

 ( )
1 1

M F S
9

N N
x y

mn mn mn

m n

h h
I

= =

 
=  
 

  

 

Required steps using the Simpson [2D] method are: 

• Define the matrix S for the [2D] Simpson coefficients.  

• Define the x and y ranges. 

• Define the xy mesh for xx and yy using the meshgrid 

function. 

• Calculate the matrix function F. 

• Calculate the mask matrix M. 

• Redefine the matrix F 

F = M F 

• Sum all the elements of the matrix F S and multiply by        

(hx hy / 9) to give the value of the integral. 

 

 

We will consider a number of examples which demonstrates 

how to apply the two-dimensional Simpson’s rule using the code  

OP001.py 
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Example 3     OP001.py 

      Integrate  
2 3

( , )f x y x y=     

       x: 0 → 2   and  y: 1 → 5 

             
5 2 2 3

1 1 0
( , ) 416

y x

y x

b b

xy a a
I f x y dx dy x y dx dy

 
= = =

  
     

 

The exact value of the integral can be found analytically and its 

value is 416. So, we can compare the numerical estimate with 

the known exact value. 

 

This is a two-dimensional problem, so we need to specify the 

values (x,y) at all grid points which are determined from the 

upper and lower bounds. We can do this using the Python 

function meshgrid to calculate the value of the function f(x,y) at 

each grid point (x,y). 

ax = 0; bx = 2; ay = 1; by = 5 

x = linspace(ax,bx,N) 

y = linspace(ay,by,N,N) 

xx, yy = np.meshgrid(x,y) 

f = xx**2*yy**3 

 

[2D] space 

To show how the meshgrid functions works, see figure (1) and 

the outputs of the variables x, y, xx, yy and f that can be 

displayed in the Console Window. 



12 
 

  

x =   0    0.5000    1.0000    1.5000    2.0000 

xx = 

         0    0.5000    1.0000    1.5000    2.0000 

         0    0.5000    1.0000    1.5000    2.0000 

         0    0.5000    1.0000    1.5000    2.0000 

         0    0.5000    1.0000    1.5000    2.0000 

         0    0.5000    1.0000    1.5000    2.0000 

 

y =   1     2     3     4     5 

yy = 

       1     1     1     1     1 

       2     2     2     2     2 

       3     3     3     3     3 

       4     4     4     4     4 

       5     5     5     5     5 

 

f = 

       0     0.2500       1.0000        2.2500       4.0000 

       0     2.0000       8.0000      18.0000     32.0000 

       0    6.7500     27.0000       60.7500    108.0000 

       0   16.0000    64.0000    144.0000    256.0000 

       0   31.2500  125.0000    281.2500     500.0000 
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Simpson coefficients 

 

The grid points for N = 5 and how these points relate to the 

Matlab matrices. 

 

Calculation of [2D] Simpson coefficients 

sc = np.ones(N) 

R = np.arange(1,N,2);   sc[R] = 4; 

R = np.arange(2,N-1,2); sc[R] = 2 

scx, scy = np.meshgrid(sc,sc) 

sc2D = scx*scy  

column vectors
xx(:,1) = [0 0 0 0 0]’
yy(:,1) = [1 2 3 4 5]’

xx(5,5) = 2   yy(5,5) = 5   f(5,5) = 500

row vectors
xx(4,:) = [0  0.5  1.0  1.5  2.0]
yy(4,:) = [4   4     4      4    4    ]

xx(2,3) = 1   yy(2,3) = 2   f(2,3) = 8

1           4          2         4           1

4           16          8       16        4

1           4          2         4           1

4           16          8       16        4

2          8          4          8           2 Simpson’s [2D]
coefficients
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Compute the integral 

hx = (bx-ax)/(N-1); hy = (by-ay)/(N-1) 

h = hx * hy / 9 

integral = h*sum(sum(sc2D*f)) 

 

Alternate way to calculate Simpson’s coefficients (op004A.py) 

# Compute [2D] integral: [2D] Simpson coefficients and 

integral 

sc = 2*ones(num) 

sc[1::2]= 4 

sc[0] = 1 

sc[num-1] = 1 

sc1,sc2 = np.meshgrid(sc,sc) 

S = sc1*sc2 

SF = S*F 

# Compute [2D] integral 

I2 = h * np.sum(SF) 

 

 

With only 5 partitions and 25 (5x5) grid points, the numerical 

estimate is 416.0, the same as the exact value. 
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Example 3   Double Integrals and Volumes     OP001.py 

  ( , )
A

Volume f x y dx dy=   

To gain an intuitive feel for double integrals, the volume of the 

region enclosed by the area A is equal to the value of the double 

integral. 

 

Volume V of a rectangular box 

 f(x,y) = k          height of box   k > 0 

     

Base of box – the lower bounds (ax and ay) and upper bounds (bx 

and by) determine the area of the rectangular base of the box 

y x

y x

b b

a a
Volume V k dx dy=    

Box    k = 1  ax = 0  bx = 1  ay = 0  by = 1  N = 299 

 

Exact volume (analytical)   V = 1.0000  

Simpson’s [2D] rule           V = 1.0000 
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Volume V of half box 

 f(x,y) = 1 - x           

     

Base of box – the lower bounds (ax and ay) and upper bounds (bx 

and by) determine the area of the rectangular base of the box 

 

  ( )1
y x

y x

b b

a a
Volume V x dx dy= −   

 

ax = 0  bx = 1  ay = 0  by = 1 

 N = 299 

 

Exact volume (analytical)  V = 

0.50000  

Simpson’s [2D] rule           V = 0.50000 
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Volume V of a part-bowl 

 f(x,y) = x2 + y2           

     

Base of box – the lower bounds (ax and ay) and upper bounds (bx 

and by) determine the area of the rectangular base of the surface 

 

  ( )2 2y x

y x

b b

a a
Volume V x y dx dy= +   

 

ax = -1  bx = 1  ay = 0    by = 1 

N = 299 

 

Exact volume (analytical)  V = 

1.3333  

Simpson’s [2D] rule           V = 1.3333 
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Volume V over a rectangular base 

 ( ) ( )( , ) cos sinf x y x y=  

    

Base of box – the lower bounds (ax and ay) and upper bounds (bx 

and by) determine the area of the rectangular base of the surface 

 

  ( ) ( )( )cos sin
y x

y x

b b

a a
Volume V x y dx dy=    

 

ax = 0  bx = /2  ay = 0    by = /2  N = 299 

 

Exact volume (analytical) 

     V = 1.000  

Simpson’s [2D] rule  

     V = 1.000000000008578 
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Volume of a hemisphere using Cartesian coordinates 

 Volume of a hemisphere of radius a   

3
2

3

a
V


=  

 Function    

2 2 2 2 2 2 2 2 2
( , ) ( , ) 0x y a f x y a x y x y a f x y+  = − − +  =  

 

  ( )2 2 2y x

y x

b b

a a
Volume V a x y dx dy= − −   

 

ax = -1  bx = 1  ay = -1    by = 1    a = 1 

 

 

 

Python plot 

 

 

 

Matlab plot is better than 

Python plot. 
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Exact volume (analytical) 

     V = 2.094395102393195  

Simpson’s [2D] rule  

N = 99       V =  2.094417986583109 

N = 999     V =  2.094395646847362 

 

We must have 

2 2 2 2 2 2 2 2 2
( , ) ( , ) 0x y a f x y a x y x y a f x y+  = − − +  =  

 

The code to define the function and mask matrix: 

f = np.real(a**2 - xx**2 - yy**2) 

# Mask matrix M 

M = np.ones([N,N]) 

M[xx**2+yy**2>1]=0 
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Volume V over a triangular base 

 

 1 ( , ) 1 ( , ) 0y x f x y h y x f x y − =  − =  

     

  
y x

y x

b b

a a
Volume V h dx dy=    

 

ax = 0  bx = 1  ay = 0    by = 1    height h = 6 

 

Exact volume (analytical) 

     V = 3.0000  

Simpson’s [2D] rule  

N = 299       V = 3.006673873549240 

N = 999       V = 3.001944436635462 

N = 999       V = 3.001944436635462 

N = 2999     V = 3.000632027607761 

 

Even with N = 2999 the calculation took less than 1.0 s on a fast 

Windows computer. 

 

The differences between the exact and computed values is due 

to the rectangular grid and the condition on the function being 

zero when y > 1 – x  

(y = 1 – x is a diagonal line and the grid is rectangular). 
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A logical Python function is used to define the function when 

 y > 1 – x. The code to define the function is 

 f = 6*xx**0*yy**0 

 f[yy > 1 - xx] = 0 
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Double Integrals In Polar Coordinates 

 

https://tutorial.math.lamar.edu/classes/calciii/dipolarcoords.aspx 

 

Double integrals in polar coordinates can be expressed as 

( )
2 2

1 1

( , ) ( , ) cos( ), sin( )
q p

q p
D D

f x y dx dy f x y dA f p q p q p dp dq      

   

where the cartesian and polar coordinates are 

 2 2 2
cos( ) sin( )x p q y p q p x y= = = +  

       

 

Example 4     area of circle of radius a         OP002.py 

p1 = 0      p2 = 2    q1 = 0     q2 = 2    a = 1    N = 999 

 
2 1

0 0
A p dp dq


=    

 

Exact area           A =   = 3.141592653589793 

 

Simpson’s [2D] rule  A = 3.141592653589793 

 

 

 

 

 

https://tutorial.math.lamar.edu/classes/calciii/dipolarcoords.aspx
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Volume of a hemisphere of radius a     OP002.py 

 
2

( , )f x y =      
2

2

0 0

a

V d d


  =    

ax = 0  bx = 2  ay = 0  by = 2  N = 299    

Exact volume (analytical)        V = 16.755160819145562 

Simpson’s [2D] rule                V =  16.755160819145555 
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Python code  OP002.py 

# Libraries 

import numpy as np 

from numpy import pi, sin, cos, linspace  

from numpy.linalg import eig 

from scipy.integrate import odeint 

import matplotlib.pyplot as plt 

import time 

from mpl_toolkits.mplot3d import axes3d 

 

tStart = time.time() 

 

# >>>>> Input number of grid points: N must be odd 

N = 999 

# p rho /  q phi 

# >>>>> Setup RP meshgrid 

p1 = 0;  p2 = 2; q1 = 0; q2 = 2*pi 

p = linspace(p1,p2,N) 

q = linspace(q1,q2,N) 

pp, qq = np.meshgrid(p,q) 

 

# Mask matrix M 

M = np.ones([N,N]) 

 

# Function  

f = pp 

 

# Simpson [2D] coefficients 

S = np.ones(N) 

R = np.arange(1,N,2);   S[R] = 4; 
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R = np.arange(2,N-1,2); S[R] = 2 

scx, scy = np.meshgrid(S,S) 

S = scx*scy 

 

# Calculate integral 

hp = (p2-p1)/(N-1); hq = (q2-q1)/(N-1) 

h = hp * hq / 9 

integral = h*sum(sum(pp*f*S)) 

 

print('\n Integral  =  ',integral) 

 

xx = pp*cos(qq); yy = pp*sin(qq) 

 

#%% GRAPHICS 

plt.rcParams['font.size'] = 10 

fig = plt.figure(figsize=(4,3)) 

ax = plt.axes(projection='3d') 

ax.plot_surface(xx, yy, f, cmap='jet', 

      edgecolor='none', alpha=1,antialiased=True) 

ax.set_xlabel('x', fontsize=12) 

ax.set_ylabel('y', fontsize=12) 

ax.set_zlabel('f', fontsize=12) 

fig.tight_layout() 

ax.view_init(17,-110,0) 

# fig.savefig('a1.png') 

 

#%% 

tExe = time.time() - tStart 

print('  ') 

print('Execution time') 

print(tExe) 


