
1

 DOING PHYSICS WITH PYTHON

NUMERICAL INTEGRATION

[1D] AND [2D] INTEGRALS

Ian Cooper

matlabvisualphysics@gmail.com

DOWNLOAD DIRECTORIES FOR PYTHON CODE

 Google drive

 GitHub

OP001.py OP002.py OP003.py

Computation of the integral of functions of the form f(x) and

f(x,y) using Simpson’s 1/3 rule. The code can be changed into a

function.

COMPUTATION OF ONE-DIMENSIONAL INTEGRALS

We want to compute a number expressing the definite integral

of the function f(x) between two specific limits a and b

(1) ()d
b

a
I f x x=

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/python

2

The evaluation of such integrals is often called quadrature.

In Python we can consider two approaches to evaluate a definite

integral (equation 1). The library from scipy import integrate is

required. Integration of a function using the functions

1. quad

2. simps for sampled data using Simpson’s rule.

Steps:

• Define the function and its limits

• Use the function quad or simps

To illustrate how to compute the integral a number of examples

will be given. Also, it is often a good idea to plot the graph of

the function f(x).

Example 1 OP003.py

/ 2

0
cos()dI x x

= () cos() 0 / 2f x x a b = = =

 1.000000exactI = …

Using quad function returns integral value and error estimate

 Iquad = 0.9999999999999999 1.1102230246251564e-14

Using simps function

 Isimps = 1.000000000004289 number of sample N = 299

3

Plot: cos(x) for x = 0 to x = / 2 .

Using Simpson’s rule: A major problem that arises with non-

adaptive methods is that the number N of partitions of the

function required to provide a given accuracy is initially

unknown. One approach to this problem is to successively

double the number of partitions, and compare the results as the

number of partitions increase.

Python code op003.py

import numpy as np

from numpy import pi, sin, cos, exp, linspace

from numpy.linalg import eig

from scipy.integrate import odeint, quad, dblquad, simps

from scipy import pi, sqrt

import matplotlib.pyplot as plt

import time

from mpl_toolkits.mplot3d import axes3d

import sympy as sym

def func(x):

4

 f = cos(x)

 return f

>>>>> Inputs: Grid points, limits

N = 299

a = 0; b = pi/2

function f(x)

x =linspace(a,b,N)

f = func(x)

Integrate function using quad

Iquad, Ierr = quad(func,a,b)

print(Iquad,Ierr)

Integrate function using simps

Is = simps(f,x)

print(Is)

Plot function

plt.rcParams['font.size'] = 12

plt.rcParams["figure.figsize"] = (6,3)

Figure 1 t vs x

fig1, axes = plt.subplots(nrows=1, ncols=1)

axes.set_xlabel('x',color= 'black',fontsize = 12)

axes.set_ylabel('f',color = 'black',fontsize = 12)

axes.xaxis.grid()

axes.yaxis.grid()

xP = x; yP = f

axes.plot(xP, yP,'b',lw = 2)

fig1.tight_layout()

fig1.savefig('a1.png')

5

Example 2 op003.py

/2 2 2

0
d () 0 / 2 1

j x j x
I e x f x e a b j

+ +

= = = = = −

 Iexact = 7.38905609893065 + 7.3890560989306495j

Using quad function returns integral value and error estimate

 Iquad = 7.38905609893065 8.203500211279747e-14

quad function only returns real part

Using simps function (number of sample N = 299)

 Isimps = 7.389056098962341+7.389056098962339j

6

SYMBOLIC [1D] INTEGRATION

Integrals can be evaluated symbolically. You need the library

import sympy as sym to use any of the symbolic tools.

A good reference is

https://scipy-lectures.org/packages/sympy.html#integration

Code from op003.py

#%% Symoblic integration: select function by removing #

x = sym.Symbol('x')

y = sym.Symbol('y')

y = 6 * x ** 5

y = sym.sin(x)

y = sym.log(x)

y = 2 * x + sym.sinh(x)

sym.integrate(y, x)

Highlight the code and use F9 to execute the code

It is possible to compute definite integral:

y = x**4; a = -1; b = 1; sym.integrate(y, (x, a, b))

sym.integrate(sym.sin(x), (x, 0, sym.pi))

sym.integrate(sym.cos(x), (x, -sym.pi / 2, sym.pi / 2))

Also improper integrals are supported as well:

sym.integrate(sym.exp(-x), (x, 0, sym.oo))

sym.integrate(sym.exp(-x ** 2), (x, -sym.oo, sym.oo))

7

[2D], surface, double, integration

(,) (,)
y x

y x

b b

A a a
I f x y dA I f x y dx dy= =

We want to compute the value of a definite integral of the

function f(x,y) between two specific limits (ax, bx) and (ay, by)

 (,)
y x

y x

b b

a a
I f x y dx dy=

A very practical and versatile way to compute [2D] integrals is

using a [2D] form of Simpson’s 1/3 rule.

Simpson’s 1/3 rule

This rule is based on using a quadratic polynomial

approximation to the function f(x) over a pair of partitions. N-1

is the number of partitions where N must be odd and

x h = (b – a) / (N-1). The integral is expressed below and is

known as the composite Simpson’s 1/3 rule.

() 1 2 4 2 3 5 14(... 2(...)
3

N N N

h
I f f f f f f f f− −= + + + + + + + + +

Simpson’s rule can be written vector form as

T

3

h
I = c f

where 1 21 4 2 4 ... 2 41 and ... Nf f f= =c f .

c and f are row vectors and fT is a column vector.

8

Simpson’s [2D] method

The double integral

 (,)
y x

y x

b b

a a
I f x y dx dy=

can be approximated by applying Simpson’s 1/3 rule twice –

once for the x integration and once for the y integration

 x-values: 1 2 3 c N
x x x x x

 y-values: 1 2 3 c N
y y y y y

The lower and upper bounds determine the size of the partitions

1 1

y yx x
x y

b ab a
dx h dy h

N N

−−
 = =

− −

The N x-values and N y-values form a two-dimensional grid of N

x N points. The function f(x,y) and the two-dimensional

Simpson’s coefficients are calculated at each grid point. Hence,

the function f(x,y) and the two-dimensional Simpson’s

coefficients can be represented by N x N matrices F and S

respectively.

9

The Simpson’s coefficient matrix S for N = 5 is

 1 4 2 4 2 4 2 4 1
 4 16 8 16 8 16 8 16 4
 2 8 4 8 4 8 4 8 2
 4 16 8 16 8 16 8 16 4
 2 8 4 8 4 8 4 8 2
 4 16 8 16 8 16 8 16 4
 2 8 4 8 4 8 4 8 2
 4 16 8 16 8 16 8 16 4
 1 4 2 4 2 4 2 4 1

Therefore, the two-dimensional Simpson’s rule which is used

to estimate the value of the surface integral can be expressed as

 ()
1 1

F S
9

N N
x y

mn mn

m n

h h
I

= =

=

1 x 1 =
1

4 x 1 =
4

2x1 =
2

4x1 =
4

1x1 =
1

1 x 4 =
4

4 x 4 =
16

2x4 =
4

4x4 =
16

1x4 =
1

1 x 2 =
8

4 x 2 =
8

2x2 =
4

4x2=
8

1x2 =
1

1 x 4 =
4

4 x 4 =
16

2x4 =
4

4x4 =
16

1x4 =
1

1 x 1 =
1

4 x 1 =
4

2x1 =
2

4x1 =
4

1x1 =
1

10

We include a mask matrix M (NxN) which has elements equal to

1 or 0 only. The mask matrix M is used where the integration is

not over a rectangular area defined by the limits ax, bx, ay and by.

The integral then becomes

 ()
1 1

M F S
9

N N
x y

mn mn mn

m n

h h
I

= =

=

Required steps using the Simpson [2D] method are:

• Define the matrix S for the [2D] Simpson coefficients.

• Define the x and y ranges.

• Define the xy mesh for xx and yy using the meshgrid

function.

• Calculate the matrix function F.

• Calculate the mask matrix M.

• Redefine the matrix F

F = M F

• Sum all the elements of the matrix F S and multiply by

(hx hy / 9) to give the value of the integral.

We will consider a number of examples which demonstrates

how to apply the two-dimensional Simpson’s rule using the code

OP001.py

11

Example 3 OP001.py

 Integrate
2 3

(,)f x y x y=

 x: 0 → 2 and y: 1 → 5

5 2 2 3

1 1 0
(,) 416

y x

y x

b b

xy a a
I f x y dx dy x y dx dy

= = =

The exact value of the integral can be found analytically and its

value is 416. So, we can compare the numerical estimate with

the known exact value.

This is a two-dimensional problem, so we need to specify the

values (x,y) at all grid points which are determined from the

upper and lower bounds. We can do this using the Python

function meshgrid to calculate the value of the function f(x,y) at

each grid point (x,y).

ax = 0; bx = 2; ay = 1; by = 5

x = linspace(ax,bx,N)

y = linspace(ay,by,N,N)

xx, yy = np.meshgrid(x,y)

f = xx**2*yy**3

[2D] space

To show how the meshgrid functions works, see figure (1) and

the outputs of the variables x, y, xx, yy and f that can be

displayed in the Console Window.

12

x = 0 0.5000 1.0000 1.5000 2.0000

xx =

 0 0.5000 1.0000 1.5000 2.0000

 0 0.5000 1.0000 1.5000 2.0000

 0 0.5000 1.0000 1.5000 2.0000

 0 0.5000 1.0000 1.5000 2.0000

 0 0.5000 1.0000 1.5000 2.0000

y = 1 2 3 4 5

yy =

 1 1 1 1 1

 2 2 2 2 2

 3 3 3 3 3

 4 4 4 4 4

 5 5 5 5 5

f =

 0 0.2500 1.0000 2.2500 4.0000

 0 2.0000 8.0000 18.0000 32.0000

 0 6.7500 27.0000 60.7500 108.0000

 0 16.0000 64.0000 144.0000 256.0000

 0 31.2500 125.0000 281.2500 500.0000

13

Simpson coefficients

The grid points for N = 5 and how these points relate to the

Matlab matrices.

Calculation of [2D] Simpson coefficients

sc = np.ones(N)

R = np.arange(1,N,2); sc[R] = 4;

R = np.arange(2,N-1,2); sc[R] = 2

scx, scy = np.meshgrid(sc,sc)

sc2D = scx*scy

column vectors
xx(:,1) = [0 0 0 0 0]’
yy(:,1) = [1 2 3 4 5]’

xx(5,5) = 2 yy(5,5) = 5 f(5,5) = 500

row vectors
xx(4,:) = [0 0.5 1.0 1.5 2.0]
yy(4,:) = [4 4 4 4 4]

xx(2,3) = 1 yy(2,3) = 2 f(2,3) = 8

1 4 2 4 1

4 16 8 16 4

1 4 2 4 1

4 16 8 16 4

2 8 4 8 2 Simpson’s [2D]
coefficients

14

Compute the integral

hx = (bx-ax)/(N-1); hy = (by-ay)/(N-1)

h = hx * hy / 9

integral = h*sum(sum(sc2D*f))

Alternate way to calculate Simpson’s coefficients (op004A.py)

Compute [2D] integral: [2D] Simpson coefficients and

integral

sc = 2*ones(num)

sc[1::2]= 4

sc[0] = 1

sc[num-1] = 1

sc1,sc2 = np.meshgrid(sc,sc)

S = sc1*sc2

SF = S*F

Compute [2D] integral

I2 = h * np.sum(SF)

With only 5 partitions and 25 (5x5) grid points, the numerical

estimate is 416.0, the same as the exact value.

15

16

Example 3 Double Integrals and Volumes OP001.py

 (,)
A

Volume f x y dx dy=

To gain an intuitive feel for double integrals, the volume of the

region enclosed by the area A is equal to the value of the double

integral.

Volume V of a rectangular box

 f(x,y) = k height of box k > 0

Base of box – the lower bounds (ax and ay) and upper bounds (bx

and by) determine the area of the rectangular base of the box

y x

y x

b b

a a
Volume V k dx dy=

Box k = 1 ax = 0 bx = 1 ay = 0 by = 1 N = 299

Exact volume (analytical) V = 1.0000

Simpson’s [2D] rule V = 1.0000

17

Volume V of half box

 f(x,y) = 1 - x

Base of box – the lower bounds (ax and ay) and upper bounds (bx

and by) determine the area of the rectangular base of the box

 ()1
y x

y x

b b

a a
Volume V x dx dy= −

ax = 0 bx = 1 ay = 0 by = 1

 N = 299

Exact volume (analytical) V =

0.50000

Simpson’s [2D] rule V = 0.50000

18

Volume V of a part-bowl

 f(x,y) = x2 + y2

Base of box – the lower bounds (ax and ay) and upper bounds (bx

and by) determine the area of the rectangular base of the surface

 ()2 2y x

y x

b b

a a
Volume V x y dx dy= +

ax = -1 bx = 1 ay = 0 by = 1

N = 299

Exact volume (analytical) V =

1.3333

Simpson’s [2D] rule V = 1.3333

19

Volume V over a rectangular base

 () ()(,) cos sinf x y x y=

Base of box – the lower bounds (ax and ay) and upper bounds (bx

and by) determine the area of the rectangular base of the surface

 () ()()cos sin
y x

y x

b b

a a
Volume V x y dx dy=

ax = 0 bx = /2 ay = 0 by = /2 N = 299

Exact volume (analytical)

 V = 1.000

Simpson’s [2D] rule

 V = 1.000000000008578

20

Volume of a hemisphere using Cartesian coordinates

 Volume of a hemisphere of radius a

3
2

3

a
V

=

 Function

2 2 2 2 2 2 2 2 2
(,) (,) 0x y a f x y a x y x y a f x y+ = − − + =

 ()2 2 2y x

y x

b b

a a
Volume V a x y dx dy= − −

ax = -1 bx = 1 ay = -1 by = 1 a = 1

Python plot

Matlab plot is better than

Python plot.

21

Exact volume (analytical)

 V = 2.094395102393195

Simpson’s [2D] rule

N = 99 V = 2.094417986583109

N = 999 V = 2.094395646847362

We must have

2 2 2 2 2 2 2 2 2
(,) (,) 0x y a f x y a x y x y a f x y+ = − − + =

The code to define the function and mask matrix:

f = np.real(a**2 - xx**2 - yy**2)

Mask matrix M

M = np.ones([N,N])

M[xx**2+yy**2>1]=0

22

Volume V over a triangular base

 1 (,) 1 (,) 0y x f x y h y x f x y − = − =

y x

y x

b b

a a
Volume V h dx dy=

ax = 0 bx = 1 ay = 0 by = 1 height h = 6

Exact volume (analytical)

 V = 3.0000

Simpson’s [2D] rule

N = 299 V = 3.006673873549240

N = 999 V = 3.001944436635462

N = 999 V = 3.001944436635462

N = 2999 V = 3.000632027607761

Even with N = 2999 the calculation took less than 1.0 s on a fast

Windows computer.

The differences between the exact and computed values is due

to the rectangular grid and the condition on the function being

zero when y > 1 – x

(y = 1 – x is a diagonal line and the grid is rectangular).

23

A logical Python function is used to define the function when

 y > 1 – x. The code to define the function is

 f = 6*xx**0*yy**0

 f[yy > 1 - xx] = 0

24

Double Integrals In Polar Coordinates

https://tutorial.math.lamar.edu/classes/calciii/dipolarcoords.aspx

Double integrals in polar coordinates can be expressed as

()
2 2

1 1

(,) (,) cos(), sin()
q p

q p
D D

f x y dx dy f x y dA f p q p q p dp dq

where the cartesian and polar coordinates are

 2 2 2
cos() sin()x p q y p q p x y= = = +

Example 4 area of circle of radius a OP002.py

p1 = 0 p2 = 2 q1 = 0 q2 = 2 a = 1 N = 999

2 1

0 0
A p dp dq

=

Exact area A = = 3.141592653589793

Simpson’s [2D] rule A = 3.141592653589793

https://tutorial.math.lamar.edu/classes/calciii/dipolarcoords.aspx

25

Volume of a hemisphere of radius a OP002.py

2

(,)f x y =
2

2

0 0

a

V d d

 =

ax = 0 bx = 2 ay = 0 by = 2 N = 299

Exact volume (analytical) V = 16.755160819145562

Simpson’s [2D] rule V = 16.755160819145555

26

Python code OP002.py

Libraries

import numpy as np

from numpy import pi, sin, cos, linspace

from numpy.linalg import eig

from scipy.integrate import odeint

import matplotlib.pyplot as plt

import time

from mpl_toolkits.mplot3d import axes3d

tStart = time.time()

>>>>> Input number of grid points: N must be odd

N = 999

p rho / q phi

>>>>> Setup RP meshgrid

p1 = 0; p2 = 2; q1 = 0; q2 = 2*pi

p = linspace(p1,p2,N)

q = linspace(q1,q2,N)

pp, qq = np.meshgrid(p,q)

Mask matrix M

M = np.ones([N,N])

Function

f = pp

Simpson [2D] coefficients

S = np.ones(N)

R = np.arange(1,N,2); S[R] = 4;

27

R = np.arange(2,N-1,2); S[R] = 2

scx, scy = np.meshgrid(S,S)

S = scx*scy

Calculate integral

hp = (p2-p1)/(N-1); hq = (q2-q1)/(N-1)

h = hp * hq / 9

integral = h*sum(sum(pp*f*S))

print('\n Integral = ',integral)

xx = pp*cos(qq); yy = pp*sin(qq)

#%% GRAPHICS

plt.rcParams['font.size'] = 10

fig = plt.figure(figsize=(4,3))

ax = plt.axes(projection='3d')

ax.plot_surface(xx, yy, f, cmap='jet',

 edgecolor='none', alpha=1,antialiased=True)

ax.set_xlabel('x', fontsize=12)

ax.set_ylabel('y', fontsize=12)

ax.set_zlabel('f', fontsize=12)

fig.tight_layout()

ax.view_init(17,-110,0)

fig.savefig('a1.png')

#%%

tExe = time.time() - tStart

print(' ')

print('Execution time')

print(tExe)

