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qm022.py          Double slit diffraction: visible EMR 
                            Electron diffraction pattern  
                              
Diffraction for visible light (400- 700 nm) from a double slit and 

corresponding electron diffraction pattern. Includes the function 

colour(wL) which returns the colour appropriate to a supplied 

wavelength. Is it assumed the supplied lambda is within the range 

380-780 nm. Smaller or higher values are set notionally to the 

extreme values. All input measurements are in nanometres.  

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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Fig. 1. Visible spectrum using the function colour(wL). 

qmspectrum.py 

 
Are electrons particles or waves ? 

 

LIGHT BEHAVING AS WAVES  

When light passes through very narrow apertures and falls on a 

screen, a diffraction / interference pattern consisting of a band of 

bright and dark regions is observed. The brightness (intensity) of light 

detected on the screen is proportional to the square of the 

amplitude of the wave. For a plane wave incident upon an aperture, 

we observe Fraunhofer diffraction when the screen distance is much 

larger than the width of the apertures. 

 

The intensity of light reaching the screen for a single slit is given by 

the equation 
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The intensity of light reaching the screen for a double slit is given by 

the equation 
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Fig. 2.  Schematic diagram for a double-slit experiment. 

 

The following figures show the diffraction of visible light for the 

wavelengths 700, 600, 500 and 400 nm. The solid plot is the double-

slit diffraction pattern and the envelope is for the single slit 

diffraction. Also, shown is the pattern you would observe by 50000 

individual electrons sticking a detection screen. Each blue dot shows 

the location of an electron hitting the screen. Notice there are 

positions on the screen where electrons never hit.  

 

So, in experimental arrangements analogous to the two-slit 

interference for light, when a beam of electrons is incident upon a 

biprism (mimics two slits for light as the electrons can travel in two 

paths around a filament) and are detected upon a screen, an 

interference pattern is observed. We must conclude that the 

electron has wave-like properties.  The term matter waves is often 

used to describe the wave-like properties of particles such as the 

electron . 
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Simulation parameters 

# Constants and Variables 

wL = 700         # wavelength [ 400 - 700 nm] 

b = 1e-4         # slit width  [ m ] 

a = 3e-4         # slit separation [ m ] 

L = 10e-3        # screen width  [ m ] 

D = 1.0          # aperture to observation screen  [ m ] 

N = 599          # grid points 
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SIMULATIONS 
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PARTICLES BEHAVING AS WAVES 

 

The electrons are individual particles when they strike a single point 

on the detection screen, but the distribution of the points on the 

screen gives an interference pattern which can only be attributed to 

a wave phenomenon. Hence, we can only conclude that electrons 

have this dual nature – they behave as particles or as waves. We 

can’t predict where a single electron will arrive on the screen. We 

only know the probability of where an electron will strike. This 

behaviour is typical of the quantum world and is a good example of 

the interplay between indeterminism and determinism.  

 

The electron is represented by a mathematical function called the 

wavefunction  ( , )r t  which is a function of the position of the 

electron and time. The evolution of the wavefunction for a single 

electron is governed by the Schrodinger’s equation. However, this 

wavefunction is a complex quantity and can’t be measured directly. 

From it we can find the probability of locating the electron at some 

instant. The probability density is proportional to the real quantity

2
( , )r t . 
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We can now interpret the irradiance given by equations 1 and 2 as a 

probability density for the electron striking the screen and the area 

under the curve being proportional to the probability of finding the 

electron. For a one-dimensional system, the probability of finding an 

electron between x1 and x2 at time t is given by 

 (3)  
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and for the two-slit example, the probability of hitting a pixel at 

position (x, y) on the detection screen at time t is 

 (4)  
2

( ) ( , , )probability pixel x y t A   

 

where A is the area of the pixel. 

 

We can’t predict where a particular electron will strike the screen 

but the pattern formed by many electrons is predicted by the 

Schrodinger equation which tells how   spreads out from the slit to 

the screen. When a single electron leaves the slits and just before it 

strikes the screen, its wavefunction is spread out over a wide area 

which would cover many pixels, but only one pixel is triggered to 

respond, no other pixels respond. When a single pixel is triggered, 

we can interpret this in terms of news spreading out instantly from 

the responding pixel, telling all other pixels not to respond. This is an 

example of quantum non-locality – what happens at one place 

https://d-arora.github.io/Doing-Physics-With-Matlab/mpDocs/qm2DA.htm
https://d-arora.github.io/Doing-Physics-With-Matlab/mpDocs/qm2DA.htm
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affects what happens at other places in a manner that can’t be 

explained by communication at the speed of light (maximum speed 

at which any information can be transmitted). We say that when the 

electron is detected, its wavefunction collapses. In terms of 

quantum physics, a particle is interpreted as an entity which is found 

in only one place when its position is measured.   

 

For a free particle (total energy E = kinetic energy K, potential 

energy U = 0) its wave nature is described by its de Broglie 

wavelength   

 (5)  
h

p
 =  

 

where h is Planck’s constant and p is the momentum of the particle. 

Diffraction experiments confirm that the wavelength given by 

equation 5 agrees with the wavelength as measured in these 

experiments. 

 

In is an easy task to modify the code qm022.py to animate the 

sequence of individual electrons hitting the detector screen. 

 

Below is a sequence of plots showing an increasing number of 

electrons being detected. Only after many thousands of impacts 

does the interference pattern immerge. 
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The position of an electron is not known until it is measured. The 

electron does not spread out like the wave producing the 

interference pattern. The complex wavefunction gives a complete 

description of the electron. It is no longer sensible to think about the 

electron as a moving particle. 
2

( , )r t tells us only the probability for 

finding the electron at a certain location. 

 

The electrons propagate as waves (but not like classical waves) and 

are detected as particles – they display wave-particle duality.  

 

 

 


