
1

DOING PHYSICS WITH PYTHON

QUANTUM MECHANICS

EIGENSTATES OF A PARTICLE BOUND IN A

POTENTIAL WEL

Ian Cooper

matlabvisualphysics@gmail.com

DOWNLOAD DIRECTORY FOR PYTHON SCRIPTS

qm040.py

Solution of the [1D] Schrodinger equation by finding the eigenvalues

and eigenvectors for an electron confined to a region of space by a

square potential well.

 GitHub

 Google Drive

References

Operators, expectation values, Heisenberg Uncertainty
Principle

Transverse standing waves

First and Second derivative operators

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm002.pdf
https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm002.pdf
https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm042.pdf
https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm001.pdf

2

INTRODUCTION

We will consider a system of an electron confined to a [1D] region of

space by a potential well. The top of the well corresponds to the zero

of the potential energy function and the bottom of well has a negative

energy value.

The [1D] Schrodinger equation for our system is

 ˆ () () 0 1, 2, 3, ...n n n nH x E x E n = =

where Ĥ is the Hamiltonian operator, ()n x is the nth eigenvector

(eigenfunction) and nE is the corresponding eigenvalue. The

eigenvectors form a complete set. Any wavefunction can be expressed

as a linear combination of the eigenvectors.

The Hamiltonian operator Ĥ depends upon the kinetic energy

operator K̂ and the potential energy Û of the system

2 2

2
ˆ ˆ ˆ ˆ

2
H K U K

m x

= + = −

So, the Schrodinger equation can be written as

()ˆ ˆ () ()n n nK U x E x + =

This is an eigenvalue problem, and Python can be used to solve the

Schrodinger equation by finding the eigenvalues and eigenvectors

3

for the bound electron. In computing the solution of the Schrodinger

equation, operators are represented by matrices and the eigenvectors

by vectors. For N grid points, the Schrodinger equation in matrix form

is

 () n n nE + =K U

where K and U are NxN matrices and n is a column vector (1xN).

All the elements of the matrix U are zero except that the N diagonal

elements that equal the N elements of the potential energy function

U(x). For a square potential well of depth U0 and width w, the Code

for the U matrix is

 U = zeros(N)

U[x>-w/2] = U0

U[x>w/2] = 0

UM = diag(U)

The operator K̂ has a term for the second derivative and its matrix

can be written as

2

0 0 0

1 2 1 0 0
1

1

0

2 1

1 2

1

0 0

0 0 1 2 1

0 0 2

x

−

−

−

−

−

4

Warning: the second derivative matrix only operates on the N internal

x grid points and not as the end points of x domain. The boundary

conditions are that the two end eigenvector elements for n are zero at

the end points of the x domain.

For calculations, S.I. units are used: energy [J] and positions [m].

However, for display purposes energies are given in eV and positions

in nm

se = e # Energy scaling factor J <---> ev

sx = 1e-9 # Length scaling factor m <---> nm

The Code for the kinetic energy matrix and Hamiltonian matrix is

AM (second derivative), KM (kinetic energy), HM (Hamiltonian)

matrices

 Cse = -hbar**2/(2*me)

off = ones(N-1)

AM = (-2*np.eye(N) + np.diag(off,1) + np.diag(off,-1))/(dx**2)

KM = Cse*AM

HM = KM + UM

The solutions of the Schrodinger equation are the eigenvalues ev and

the eigenvectors ef and can be found using the Code

 ev, ef = eigsh(HM, which="SM", k = M)

5

k = M returns M eigenvalues. M has to be larger enough to return the

most negative eigenvalues.

which="SM" the eigenvalues are sorted from smallest to largest

values.

For the bound electron, only the negative eigenvalues are relevant.

The energy eigenvalues in eV are determined from the Code

 E = ev[ev<0]/se # negative eigenvalues [eV]

The eigenvectors are normalized (probability of finding the electron

in the x domain must be one).

psi = zeros([N,len(E)]); psi2 = zeros([N,len(E)])

for c in range(len(E)):

 psi[:,c] = ef[:,c]

 psi2[:,c] = psi[:,c]**2

 area = simps(psi2[:,c],x)

 psi[:,c] = psi[:,c]/sqrt(area)

probD = psi**2 # probability density [1/m]

6

Once we know the normalized eigenvectors, we can calculate the

expectation values for position and its uncertainty, momentum and its

uncertainty, total energy, kinetic energy and potential energy. Then

we can test the Heisenberg Uncertainty Principle

2
1

2

dX dY
x p HCP =

In the Code qm040.py, I have not included the eigenvector elements

at the boundaries xMin and xMax. This introduces a small error in the

values of the expectation values. This can be corrected by including

the end points and thus the length of the x and psi arrays would be

N+2.

#%% EXPECTATION VALUE CALCULATIONS

def firstDer(N,dx):

 v = ones(N-1)

 M1 = diag(-v,-1)

 M2 = diag(v,1)

 M = M1+M2

 M[0,0] = -2; M[0,1] = 2; M[N-1,N-2] = -2; M[N-1,N-1] = 2

 MF = M/(2*dx)

 return MF

def secondDer(N,dx):

 v = -2*ones(N)

7

 M1 = np.diag(v)

 v = np.ones(N-1)

 M2 = np.diag(v,1)

 M3 = np.diag(v,-1)

 M = M1+M2+M3

 M[0,0] = 1; M[0,1] = -2; M[0,2] = 1

 M[N-1,N-3] = 1; M[N-1,N-2] = -2; M[N-1,N-1]=1

 MS = M/(dx**2)

 return MS

y = psi[:,1] # eigenfunction n

Probability

fn = y**2

prob = simps(fn,x)

Position and its uncertainty

fn = y*x*y

x_avg = simps(fn,x) # [nm]

fn = y*x**2*y

x2_avg = simps(fn,x) # [nm*nm]

dX = sqrt(x2_avg - x_avg**2) # [m]

Momentum and its uncertainty

y2 = firstDer(N,dx)@y

fn = y*y2

8

p_avg = -1j*hbar*simps(fn,x) # [N.s]

y2 = secondDer(N,dx)@y # Second derivative matrix x [m]

fn = y*y2 # Second derivative of function y

p2_avg = -hbar**2*simps(fn,x) # [N^2.S^2]

dP = sqrt(p2_avg - imag(p_avg)**2) # [N.s]

Heisenberg Uncertainty Principle

HUP = 2*abs(dX*dP/hbar)

Potential energy [ev]

fn = y*U*y

U_avg = simps(fn,x)/se

Kinetic energy [ev]

K_avg = p2_avg/(2*me)/se

Total energy [ev]

E_avg = K_avg + U_avg

9

SQUARE WELL

The Code qm040.py solves the Schrodinger equation for a square

potential well. The results of the simulation are displayed in the

Console Window and in Plot Windows.

grid point N = 519 eigenvalues returned M = 30

xMin = -0.20 nm xMax = 0.20 nm

well width w = 0.10 nm

well depth U0 = -1000 ev

Energy eigenvalues [ev]

 E1 = -970.048

 E2 = -880.624

 E3 = -733.192

 E4 = -530.987

 E5 = -281.740

 E6 = -19.645

Eigenstate n = 1

 Expectation values and Uncertainty Principle

 <x> = 0.00 m deltax dX = 3.00e-11 m

 <p> = 0.00 N.s deltax dP = 5.56e-24 m

 HUP = 3.17 > 1

 Eigenstate energies

 En = -880.62 eV

 <E> = -880.62 <K> = 106.02 <U> = -986.65

 <K> + <U> = -880.62

Execution time = 4 s

10

11

12

It is an easy task to modify the Code to simulate a wide variety of

potential energy functions. If you change the well parameters, then it

may be necessary to modify the Code for the results displayed in the

Console and Plot windows,

