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INTRODUCTION 

We will consider a system of an electron confined to a [1D] region of 

space by a potential well. The top of the well corresponds to the zero 

of the potential energy function and the bottom of well has a negative 

energy value. 

 

The [1D] Schrodinger equation for our system is 

 ˆ ( ) ( ) 0 1, 2, 3, ...n n n nH x E x E n =  =  

 

where Ĥ  is the Hamiltonian operator, ( )n x  is the nth eigenvector 

(eigenfunction) and nE  is the corresponding eigenvalue. The 

eigenvectors form a complete set. Any wavefunction can be expressed 

as a linear combination of the eigenvectors. 

 

The Hamiltonian operator Ĥ depends upon the kinetic energy 

operator K̂  and the potential energy Û  of the system 
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So, the Schrodinger equation can be written as 

( )ˆ ˆ ( ) ( )n n nK U x E x + =  

 

This is an eigenvalue problem, and Python can be used to solve the 

Schrodinger equation by finding the eigenvalues and eigenvectors  
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for the bound electron. In computing the solution of the Schrodinger 

equation, operators are represented by matrices and the eigenvectors 

by vectors. For N grid points, the Schrodinger equation in matrix form 

is 

 ( ) n n nE + =K U  

 

where K and U are NxN matrices and n  is a column vector (1xN). 

 

All the elements of the matrix U are zero except that the N diagonal 

elements that equal the N elements of the potential energy function 

U(x). For a square potential well of depth U0 and width w, the Code 

for the U matrix is 

 U = zeros(N)                 

U[x>-w/2] = U0  

U[x>w/2] = 0                                

UM = diag(U)   

 

The operator K̂  has a term for the second derivative and its matrix 

can be written as 
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Warning: the second derivative matrix only operates on the N internal 

x grid points and not as the end points of x domain. The boundary 

conditions are that the two end eigenvector elements for n are zero at 

the end points of the x domain. 

 

For calculations, S.I. units are used: energy [J] and positions [m]. 

However, for display purposes energies are given in eV and positions 

in nm 

se = e            # Energy scaling factor   J <---> ev  

sx = 1e-9       # Length scaling factor   m <---> nm 

 

The Code for the kinetic energy matrix and Hamiltonian matrix is 

# AM (second derivative), KM (kinetic energy), HM (Hamiltonian) 

matrices 

 Cse = -hbar**2/(2*me) 

off = ones(N-1) 

AM = (-2*np.eye(N) + np.diag(off,1) + np.diag(off,-1))/(dx**2) 

KM = Cse*AM 

HM = KM + UM 

 

The solutions of the Schrodinger equation are the eigenvalues ev and 

the eigenvectors ef and can be found using the Code 

 ev, ef = eigsh(HM, which="SM", k = M) 
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k = M   returns M eigenvalues. M has to be larger enough to return the 

most negative eigenvalues. 

which="SM"  the eigenvalues are sorted from smallest to largest 

values. 

 

For the bound electron, only the negative eigenvalues are relevant. 

The energy eigenvalues in eV are determined from the Code 

 E = ev[ev<0]/se                 # negative eigenvalues [eV] 

 

The eigenvectors are normalized (probability of finding the electron 

in the x domain must be one). 

psi = zeros([N,len(E)]); psi2 = zeros([N,len(E)]) 

for c in range(len(E)): 

    psi[:,c] = ef[:,c] 

    psi2[:,c] = psi[:,c]**2 

    area = simps(psi2[:,c],x) 

    psi[:,c] = psi[:,c]/sqrt(area) 

probD = psi**2    # probability density [1/m] 
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Once we know the normalized eigenvectors, we can calculate the 

expectation values for position and its uncertainty, momentum and its 

uncertainty, total energy, kinetic energy and potential energy. Then 

we can test the Heisenberg Uncertainty Principle 

2
1

2

dX dY
x p HCP   =   

 

In the Code qm040.py, I have not included the eigenvector elements 

at the boundaries xMin and xMax. This introduces a small error in the 

values of the expectation values. This can be corrected by including 

the end points and thus the length of the x and psi arrays would be 

N+2. 

 

#%% EXPECTATION VALUE CALCULATIONS 

def firstDer(N,dx): 

    v  = ones(N-1) 

    M1 = diag(-v,-1) 

    M2 = diag(v,1) 

    M = M1+M2 

    M[0,0] = -2; M[0,1] = 2; M[N-1,N-2] = -2; M[N-1,N-1] = 2 

    MF = M/(2*dx)  

    return MF 

 

def secondDer(N,dx): 

     v = -2*ones(N) 
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     M1 = np.diag(v) 

     v = np.ones(N-1) 

     M2 = np.diag(v,1) 

     M3 = np.diag(v,-1) 

     M = M1+M2+M3 

     M[0,0] = 1; M[0,1] = -2; M[0,2] = 1 

     M[N-1,N-3] = 1; M[N-1,N-2] = -2; M[N-1,N-1]=1 

     MS = M/(dx**2)  

     return MS 

 

y = psi[:,1]      # eigenfunction n 

# Probability 

fn = y**2 

prob = simps(fn,x) 

# Position and its uncertainty 

fn = y*x*y 

x_avg = simps(fn,x)                 # [nm] 

fn = y*x**2*y 

x2_avg = simps(fn,x)                # [nm*nm] 

dX = sqrt(x2_avg - x_avg**2)     #  [m] 

 

# Momentum and its uncertainty 

y2 = firstDer(N,dx)@y 

fn = y*y2 
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p_avg = -1j*hbar*simps(fn,x)                  # [N.s] 

y2 = secondDer(N,dx)@y     # Second derivative matrix x [m] 

fn = y*y2                  # Second derivative of function y 

p2_avg = -hbar**2*simps(fn,x)   # [N^2.S^2] 

dP = sqrt(p2_avg - imag(p_avg)**2)        # [N.s] 

 

# Heisenberg Uncertainty Principle 

HUP = 2*abs(dX*dP/hbar) 

 

# Potential energy  [ev] 

fn = y*U*y 

U_avg = simps(fn,x)/se 

# Kinetic energy [ev] 

K_avg = p2_avg/(2*me)/se 

# Total energy [ev] 

E_avg = K_avg + U_avg 
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SQUARE WELL 

The Code qm040.py solves the Schrodinger equation for a square 

potential well. The results of the simulation are displayed in the 

Console Window and in Plot Windows. 

 

grid point N = 519   eigenvalues returned M = 30 

xMin = -0.20 nm   xMax = 0.20 nm 

well width w = 0.10 nm 

well depth U0 = -1000 ev 

  

Energy eigenvalues [ev] 

   E1 = -970.048 

   E2 = -880.624 

   E3 = -733.192 

   E4 = -530.987 

   E5 = -281.740 

   E6 = -19.645 

  

Eigenstate n =  1 

  Expectation values and Uncertainty Principle 

    <x> = 0.00 m   deltax dX = 3.00e-11 m 

    <p> = 0.00 N.s   deltax dP = 5.56e-24 m 

    HUP = 3.17  > 1 

   Eigenstate energies 

    En = -880.62 eV 

    <E> = -880.62 <K> =  106.02 <U> = -986.65 

    <K> + <U> = -880.62 

   

Execution time =  4 s 
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It is an easy task to modify the Code to simulate a wide variety of 

potential energy functions. If you change the well parameters, then it 

may be necessary to modify the Code for the results displayed in the 

Console and Plot windows, 

 


