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Solution of the [1D] Schrodinger equation by finding the eigenvalues 

and eigenvectors for an electron confined to a region of space by an 

infinite and a finite square potential well. 

 

   GitHub 

 

   Google Drive 

 

  

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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INTRODUCTION 

A particle in a box refers to a system where the particle is confined to 

a limited region of space. Technological devices mainly made from 

semiconducting materials such as silicon and gallium that exploit the 

quantum behaviour of particles in boxes are becoming increasingly 

important. At the heart of many such devices is a tiny structure called 

a quantum dot that consists of a speck (~ 1 nm across and contain 

~100 atoms) of one semiconductor embedded in a larger sample of 

another semiconductor material.  The trapped electrons have wave 

like properties and occupy energy levels, just as electrons in atoms. 

Light emitting properties of quantum dots are used in solid state lasers 

(CD and DVD players), solar cells and as fluorescent markers used in 

biomedical applications are such a few applications. 

 

https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm002.pdf
https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm042.pdf
https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm001.pdf
https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm040.pdf
https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm040.pdf
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Fig. 1.   Quantum dot carved from a graphene sheet 

 

 

 

 

Fig. 2.   Photoluminescence of alloyed CdSxSe1-x/ZnS quantum dots 

of 6 nm diameter. The material emits different colour of light by 

tuning the composition and the quantum dot size. 
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When a particle is confined in a limited region, quantum mechanics 

yields the predictions that: 

• Only certain energy levels are possible. 

• There is a zero-point energy, the lowest energy eigenstate. The 

particle can not have zero total energy. 

• There is a finite probability that the particle can be found after a 

measurement of its position in a classical forbidden region 

where its kinetic energy is negative. 

• The eigenfunctions are standing waves like the vibrations of a 

guitar string (same vibrations throughout the wave). 

• The physical quantities of position and velocity are not defined. 

You can no longer refer to a moving particle when the particle is 

confined.. 

 
 
[1D] INFINITE SQUARE WELL 

Our first well we will consider is the infinite square well of width L. 

The potential energy well responsible for trapping the electron has 

abrupt, infinitely high walls, but between the walls, the electron feels 

a zero-force acting on it.  The potential energy function is 
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https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm042an.htm
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According to classical physics, the total energy of a trapped particle in 

a [1D] square infinite square well can have any positive constant 

value. Since the potential energy within the well is zero, the total 

energy is equal to the kinetic energy of the particle (E = K + U). 

Therefore, a non-zero kinetic energy means that the particle would be 

bouncing back and forth between the impenetrable walls. The region 

outside the well would never be penetrated by the particle. This 

region outside the well is called the forbidden classical region.

  

We will take an electron as the particle and consider its wave 

properties. The eigenvalues and eigenfunctions for the system of an 

electron trapped in the [1D] infinite potential well are determined by 

solving the Schrodinger equation with the boundary conditions that 

each eigenfunction must vanish at the boundaries (impenetrable well 

walls). 

 

The energy eigenvalues are given by 
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and the corresponding normalized eigenfunctions by 
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The eigenfunction is always zero at the boundaries of the box, and is 

also zero at n-1 points (nodes) inside the box. The de Broglie 

wavelengths for the particle in the box only depend upon the width of 

the box 

 
2 L

n
 =  

and the spacing between adjacent nodes or between adjacent 

antinodes is / 2 .  

 

The stationary-state wave function for the eigenstate n is 
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Each eigenstate describes a complex standing wave (a wave that 

oscillates without propagating through space). The angular frequency 

n , frequency nf  and period nT  of oscillation are 

 / / /n n n n n nE f E h T h E = = =  

 

The eigenfunctions are thus time dependent. However, the probability 

density function does not depend upon time 
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The eigenfunctions are orthogonal to each other 
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Any wavefunction that satisfies the Schrodinger equation and the 

boundary conditions can be expressed as linear combination of the 

eigenfunctions 

 
2

1n n n
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Our classical particle with non-zero kinetic energy would just bounce 

back and forth between the impenetrable walls. But a “real” particle 

such as an electron does not behave as a classical particle when 

confined to volumes of atomic dimensions. One can no longer think 

about the particle as a moving particle since at nodal points there is 

zero probability of finding the particle. So, how can the particle travel 

through a node? The particle has no position or velocity before a 

measurement is made on the system, we only know the probability of 

locating the particle after the measurement is performed. Before the 

measurement is made, a particle in a state is described by its 

wavefunction. This wavefunction gives the most complete description 

that is possible of the system and it does not assign definite values to 

either position or velocity. 

 

  



8 

 

[1D] INFINITE AND FINITE SQUARE WELLS 

 

        reference finite square well 

 

We will compare the eigenstates for an electron confined by finite 

square well potential where the top of the well corresponds to the zero 

of the potential energy function and the bottom of well has a negative 

energy value and the electron confined by an infinite square well. 

 

We can make a comparison of the eigenvalues and eigenfunctions for 

the infinite square potential well and the finite square potential well 

by shifting the bottom of the infinite well is to -1000 eV. The width of 

both wells is L = w = 0.100 nm. 

 

Energy spectrum: eigenvalues  

eV E1 E2 E3 E4 E5 E6 

infinite 37.6 150 338 602 940 1353 

infinite -962 -850 -662 -398 -59.9 +353 

finite -970 -881 -733 -530 -282 -19.6 

 

https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm040.pdf
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Fig. 3.  Energy spectrum for the infinite and finite square wells for the 

first sixth states. The zero-point energy (lowest possible energy – 

ground state) is the eigenstate n = 1. The wavelength of an 

eigenfunction for the finite square well is somewhat larger than those 

of the infinite well. A longer wavelength corresponds to lower 

momentum and lower energy. Deep inside the wells, the eigenvalues 

for both wells are similar but there is increasing divergence towards 

the top of the finite well. When E > 0, the electron is no longer 

confined to the well, but acts as a free electron which can have a 

continuous range of total energy E. Thus, the number of bound states 

is finite, in this case there are only 6 eigenstates.  The eigenstates 

where n > 1 are called excited states. 
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Eigenfunctions (eigenvectors) 

 

Fig. 4.  Eigenfunctions for the infinite square well at time t = 0. For 

each eigenstate the maximum value of the eigenvalue is set to 1.  The 

eigenfunction are sine functions with a value of zero at the boundaries 

(0) 0 ( ) 0L = = .  The eigenfunctions correspond to those of a 

vibrating string of length L with fixed ends. 
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Fig. 5.  Eigenfunctions for the finite square well at time t = 0. For 

each eigenstate the maximum value of the eigenvalue is set to 1. The 

eigenfunctions are not zero at the boundaries of the well. Inside the 

well, the eigenfunctions are sinusoidal but outside, the eigenfunctions 

are decreasing exponential functions. The eigenfunctions for the finite 

square well bear close resemblance to those of the finite square well, 

except that there is a small exponential tail outside the well, showing 

some penetration of the electron into the classically forbidden regions 

of negative kinetic energy. 
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Probability density functions 

 

 

Fig. 6.  Probability density function for the infinite square well. Area 

under curves is one since each eigenfunction has been normalized. 
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Fig. 7.  Probability density function for the finite square well. Area 

under curves is one since each eigenfunction has been normalized. 

For the eigenstate n = 1 (ground state), the highest probability of 

finding the electron is at the centre of the well. This is in sharp 

contrast to classical physics which prediction gives the highest 

probability of finding the electron would be at the edges. In this 

instance, it is surprising that the electron “avoids” the edges. 
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We have not yet addressed the question about how our single electron 

emits a photon (electromagnetic) radiation. This will be discussed in 

another article. 

 

 Transitions between states 

 

 

You can also model nuclear systems where the width of a well is in 

the order of femtometres and depths in the order of 50 MeV. For 

example, a proton is bound to the neutron by the strong nuclear force. 

Although this is a [3D] system, it is possible to model the deuteron 

involving a finite square well of depth 38.5 MeV occupying a 

spherical region of radius 1.63x10-15 m. One energy level is found 

(ground state) with this model, so there are no excited states. In this 

ground state, the eigenfunction extends far beyond the confines of the 

well giving a 50% change of finding a particle in a classically 

forbidden region and the expectation value for the separation of the 

two particles is 4x10-15 m. 

 

I tried modifying Code qm040.py to model the deuteron, but it did not 

work?  

https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm049.pdf

