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[1D] FINITE SQUARE WELL POTENTIAL WITH A SLOPING 

FLOOR 

 

In this article we will consider a finite potential well with a sloping 

floor or ramp potential and the well is defined by the Python Code 

 

qm044.py 

xMin = -0.2*sx         #  default = -0.2 nm 

xMax =  0.2*sx         #  default = +0.2 nm 

U1 = -1200*se          #  Depth of well: default = -1200 eV 

U2 = -200*se 

w = 0.2*sx               #  Width of well: default 0.2 nm 

# Potential energy function  [J] 

U = zeros(N)  

x1 = -(w/2); x2 = (w/2) 

m = (U2-U1)/(x2-x1); b = U1 - m*x1              

U[x>-w/2] = m*x[x>-w/2]  + b  

U[x>w/2] = 0                                

UM = diag(U)   

 

  

 

The well parameters were selected to give at least six eigenstates as 

shown in figure 1. 
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Fig. 1.  Energy spectrum and square potential well with a sloping 

floor. The well parameters are: width w = 0.200 nm with depths U1 = 

-1200 eV and U2 = -200 eV. 

 

Energy spectrum: energy eigenvalues  [eV] 

   E1 = -998.987 

   E2 = -827.688 

   E3 = -687.575 

   E4 = -563.876 

   E5 = -450.941 

   E6 = -345.674 

   E7 = -244.537 

   E8 = -141.150 

   E9 = -33.763 
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Eigenfunctions (eigenvectors) 

 

Fig. 2.  Eigenfunctions for the finite square well with a sloping floor 

at time t = 0. Each eigenfunction has been scaled by dividing each 

eigenfunction by the maximum of eigenfunction n = 1.  Note: The 

peaks in the eigenfunctions increase in height as the potential energy 

increases in the direction of increasing x. 
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Probability density functions 

 

Fig. 3.  Probability density function for the finite square well with a 

sloping floor. Area under curves is one since each eigenfunction has 

been normalized. 
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Quantum Interpretation 

As the quantum number n increases, the maximum value in the 

amplitude of the eigenfunction shifts in the direction of higher 

potential energy and therefore, lower kinetic energy, lower 

momentum and longer wavelength.  

 

This can be shown by considering the eigenfunction and its slope at 

the boundary between two adjacent sections. We can consider the 

eigenfunction to be expressed as a sine function, then 
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These equations can be squared and added to eliminate the phase   to 

give the equation for the maximum value of A 
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At the boundary of the two adjacent sections, the eigenfunction  and 

its slope /m d dx=  must be continuous function of x. So, at 

infinitesimal distances close to the boundary, the values of both 
2  

and m2 are equal in magnitude on either side, but the value of the 

wavelength increases in the direction of higher potential. Therefore, 
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the coefficient A increases with increasing wavelength, as shown in 

figure 2 for n = 6. 

 

This result of greater amplitude with larger wavelength is important 

because any potential energy function can be approximated by a 

series of step functions. This implies that for any potential energy 

function, regions of smaller kinetic energy or smaller momentum and 

larger wavelength have a larger maximum value of the amplitude of 

the eigenfunction than adjacent regions of larger kinetic energy or 

momentum and smaller wavelength.  

 

In nonuniform potential wells the wavefunctions are not sinusoidal, 

but over a small part of the cycle, the potential energy does not 

change much, and so we speak loosely of a local “wavelength”.  

 

 

Eigenstate explorations 

In the input section of the code for qm044.py you can enter the 

quantum number n for the state. In running the Code, a summary of 

the expectation values is shown in the Console Window as well you 

can test the Uncertainty Principle  

           / 2 2 / 1x p HUP x p   =    .  

 

Plots of the potential well, the eigenfunction and probability 

density are displayed in Figure Windows.  
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Eigenstate n = 2 

 

 

 

Fig. 4.   n = 2: Plots of the eigenfunction, probability density and the 

potential energy function U and the kinetic energy function K. In the 

region where K > 0, the eigenfunction is a sinusoidal function (highest 

probability of finding the electron) and in the regions where K < 0, the 

eigenfunction is an exponentially decreasing function (non-zero 

probability of finding the electron). 
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Eigenstate n =  2 
  Expectation values and Uncertainty Principle 
    <x> = -0.053 nm 
    deltax dX = 0.024 nm 
    <p> = 0.00 N.s   deltax dP = 5.87e-24 m 
    HUP = 2.70  > 1 
   
  Eigenstate energies 
    En = -827.69 eV 
    <E> = -827.69 <K> =  117.97 <U> = -945.66 
    <K> + <U> = -827.69 
   
Execution time =  6 s 
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Eigenstate n = 6 

 
 

 
Fig. 5.   n = 6: Plots of the eigenfunction, probability density and the 

potential energy function U and the kinetic energy function K. In the 

region where K > 0, the eigenfunction is a sinusoidal function (highest 

probability of finding the electron) and in the regions where K < 0, the 

eigenfunction is an exponentially decreasing function (non-zero 

probability of finding the electron). 
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  Eigenstate n =  6 
  Expectation values and Uncertainty Principle 
       <x> = 0.010 nm 
        deltax dX = 0.054 nm 
       <p> = 0.00 N.s   deltax dP = 9.01e-24 m 
       HUP = 9.21  > 1 
    
   Eigenstate energies 
        En = -345.67 eV 
      <E> = -345.67 <K> =  277.84 <U> = -623.52 
       <K> + <U> = -345.67 
   
 Execution time =  5 s 


