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INTRODUCTION 

Molecules emit and absorb electromagnetic radiation just like atoms. 

In general, the spectrum emitted by molecules can be divided into 

three spectral ranges which correspond to different types of quantum 

state transitions. 

 

1. Electronic spectra: Transitions of bound electrons between 

different energy levels. The photons emitted or absorbed are 

often in the visible part of the electromagnetic spectrum. 

2. Rotation spectra: Assume that a molecule possessed a 

permanent electric dipole moment. If the molecule rotates it 

would emit infrared or microwave radiation, or if the molecule 

absorbs radiation, it could set the molecule into rotation. 

3. Vibration spectra: If the atoms in the molecule vibrate and this 

results in a fluctuating charge distribution then the molecule will 

emit radiation or when the molecule absorbs radiation it will 

cause the atoms to vibrate. The emission or absorption of 

radiation is mostly in the infrared. 

 

The spacing of the energy levels for the vibration of molecules is 

greater than the spacing of the energy levels for rotation. So, the 

spectra for rotation-vibration are complicated and many fine emission 

lines or absorption lines will be observed. Typical photon energies 
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are: rotation 10-5 to 10-3 eV (microwave) and vibration 0.2 to 2 eV 

(infrared). 

ROTATION SPECTRA 

A simple model of a molecule is to consider it to made up of a set of 

mass points in fixed positions (rigid rotor model). The rotational 

states of the molecule are characterised by its orbital momentum 

quantum number J. The symbol J is often used by chemists, 

whereas physicists use the letter l ( )J l .  In the quantum world, the 

angular momentum is quantized and is characterized by fixed integer 

values including zero for the value of J ( )0 , 1, 2, 3, ...J = . For 

diatomic molecules the line joining the atoms is an axis of symmetry 

and rotations perpendicular to the axis of symmetry are of 

significance and the moment of inertia about all such perpendicular 

axes will have the same value. The relationship between moment of 

inertia I, angular momentum L and total energy ER of the rotating 

molecule (rotation frequency R ) are 
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The quantum (wave-mechanical) value of the angular momentum L 

and the rotation energy ER(J) are 
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where ( )RE J  is the energy level for the state J and B is the rotation 

constant. 

 

Energy of rotational transitions 

A diatomic molecule such as HCl can radiate by electric dipole 

emission because it possesses a permanent electric dipole moment 

where one point mass is positive and the other negative. The selection 

rule for allowed transitions for electric dipole radiation is  

 1J =   

emission, 1J = −  and absorption 1J = +  

 

When a molecule is irradiated with photons of light it may absorb the 

radiation and undergo an energy transition. The energy of the 

transition must be equivalent to the energy of the photon of light 

absorbed 

absorption 

1 ( 1) ( ) 1R R photonJ J E J E J E h f J→ + + − = =  = +  

 

When the transition is from a higher energy state to a lower energy 

state, a photon is emitted with an energy equal to the transition energy 

 emission 

 1 ( ) ( 1) 1R R photonJ J E J E J E h f J+ → − − = − = −  = −   
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The energy difference ( )RE J  between rotational levels  1J J +  

is given by: 
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 
 

where the J in the variable ( )RE J  always refers to the lower energy 

level in the transitions 1J J + . The parameters describing the 

photon absorbed or emitted are 
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where , ,f   are the frequency and wavelength of the photon 

absorbed or emitted. 

 

Note: J always refers to the lowest energy level in the transitions 

 1J J +                   J = 0, 1, 2, 3, …. 

 

The first four rotational energy levels are 

2 2 2
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Thus, the spacing between successive adjacent energy levels are 
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 ( )2
( ) ( 1) ( ) 2 / 2 ( 1) 2 ( 1)R R JE E J E IJ J JB = + − = + = +  

 

(0 11 40 1 ) 2 2( ) 2 2 3 ( ) 6E B E B E B  =   =   =  

 

Diatomic molecules 

For a diatomic molecule assuming it is rigid (dimensions do not 

change), its moment of inertia I about its centre of mass um  is 

determine by the following, where m is the mass and r is the distance 

from the centre of mass (centre of mass is taken as the Origin)  
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Fig. 1.   The rigid rotor coordinate system. A diatomic molecule has 

two degrees of freedom for rotation. 

The rotational energy levels for the HCl molecule are shown in figure 

1. The rotational energies are given by the equation 

 
2

( ) ( 1) ( 1)
2

RE J J J J J B
I

= + = +  

 

Fig. 1.   The rotational energy levels for the HCl molecule (left plot: 

first 12 energy levels). The increase in energy ER with the angular 
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momentum quantum number J is a quadratic function of J (right plot: 

first 25 energy levels). 

 

Figure 2 shows the spacing between adjacent energy dE levels for 

transitions 1J =   

 ( )2
( ) ( 1) ( ) 2 / 2 ( 1) 2 ( 1)R RE E J E I J J BJ J = + − = + = +   

 

The energy ( )dE JE   is the photon energy that is either absorbed 

or emitted in the transition 1J J + . 

 

Fig. 2.  Energy of emitted or absorbed photon in transitions from 

state 1J J +  where J refers to the lower energy level.  

 

All the hydrogen halides in the gases state show broad absorption 

lines in the microwave - far infrared. These lines are nearly equally 

spaced as shown by the approximately equal spacing of the blue 
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dots in figure 2. So, our simple theory has good agreement for 

recorded absorption spectra. 

 

The dependence on J for the wavelength  , frequency f, and wave 

number 1 /k =   of an emitted or absorbed photon are shown in 

figure 3. The linear relationship between the orbital quantum 

number J and the wavenumber k as shown in figure 3 is confined 

with experimental results. 

 

 

 

 

 

Fig. 3.  Transition 1J J + : dependence on J for the wavelength 

 , frequency f, and wavenumber 1 /k = of the emitted or 

absorbed photons. 
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As molecules are excited to higher rotational energies they spin at a 

faster rate. The faster rate of spin increases the centrifugal force 

pushing outward on the molecules resulting in a longer average 

bond length which increases the moment of inertia I and thus 

decreasing the rotation constant B. Therefore, the addition of 

centrifugal distortion at higher rotational levels decreases the 

spacing between rotational levels. This is only a small correction 

which is ignored in the simulations. 
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VIBRATION SPECTRA 

The vibration spectrum for the HCl molecule is discussed in depth in 

the article 

 

Vibrations of diatomic molecules HCl: Harmonic oscillator 

and anharmonic oscillator (Morse potential) 
 

 

 

The energy level diagram for the Morse potential is shown in figure 4. 

 

Fig. 4.  Morse potential well and energy level spectrum. Note: the 

reduction in spacings between adjacent energy levels as the 

vibrational quantum number increases.  Ground state n = 0,  n > 0 are 

the excited sates. Zero-point energy, E0 = 0.179 eV measured w.r.t. 

the bottom of the potential well.       

 

https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm050.pdf
https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm050.pdf
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The only allowed transitions are when the vibration quantum number 

n changes only by 1 ( )1n =  , all other transitions are forbidden for 

electric dipole radiation. 

 

Selection rule for the  vibrational spectra  

 allowed transitions     1n =   

 

Note: the spacing of the energy levels for vibration are about an order 

of magnitude greater than for the rotation energy levels. 

 

 

VIBRATION-ROTATION SPECTRA 

A molecule does not simply vibrate or rotate, but it is simultaneously 

vibrating and rotating. The total energy of a molecule is therefore the 

sum of the energy of vibration and rotation 

 V RE E E= +  

 

The vibration energy EV is found by solving the Schrodinger equation 

for the Morse potential by finding the eigenvalues of the Hamiltonian.  

The rotational energy ER is given by 

2

( ) ( 1) ( 1)
2

RE J J J J BJ
I

= + = +  

and the energy of each quantum state is given by 

 
2

( 1) ( 1)
2

V VE E J J E J J B
I

= + + = + +   
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The vibration energy is usually much larger than the rotation energy. 

Hence, the rotational levels belonging to each vibrational energy level 

from a closed spaced group. Because of the relatively small spacing 

between the rotational energy levels, they are said to constitute a band 

known as the vibration-rotation bands. In general, for diatomic 

molecules, for electric dipole radiation the selection rules for  

vibration and rotation apply although some there maybe violations of 

the rules for vibrational and rotational states 

 1 1n J =   =                 allowed transitions 

 

The general arrangement of the vibration-rotation levels is shown in 

figure 5. 

 

 

Fig. 5.   Energy levels for the diatomic molecule HCl. The blue lines 

are the vibration states m = 3 and n = 2. The red and magenta are the 

energy levels for the rotational states.  
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The allowed transitions between states can be divided into two 

branches, the R branch and the P branch as the difference in energy 

between the  1J J→ +  and 1J J+ →  transitions cause a splitting of 

vibrational spectra into two branches. 

 

 R branch  1J = +         0 1 1 2 2 3 ...→ → →  

 P branch  1J = −         1 0 2 1 3 2 ...→ → →  

 

Fig. 6.   Absorption or emission lines for the molecule HCl. The 

vibrational transition is 3 2→ . Vibration-rotation transitions: The 

lower energy transitions in blue is the P branch and the higher energy 

transitions in red is the R branch. Since the 0J =  transition is 

forbidden, there is no spectral line associated with the pure vibrational 

transition and therefore, there is a gap between the P branch and R 

branch. The spacing between adjacent lines for the P branch and R 

branch is 2B. Our model gives us estimates of the emission and 

absorption spectrum for HCl, but gives no information about the 

strength of the absorption lines or the radiative lifetimes of any state. 
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Fig. 7.   Transitions between states for the P branch and the R branch. 

 

 
Fig. 8.  Absorption spectrum for HCl. Note the double peak in the 

troughs. This is because a sample HCl contains two isotopes of 

chlorine, 35C and 37Cl.  The slightly different masses mean different 

moments of inertia and slightly different energy eigenvalues. 
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How good is our simple model?  We can compare the measured 

values the wavenumber k for the absorption lines (figure 8) with the 

predictions of our simple model. A comparison of the wavenumbers 

predicted and measured is shown in figure 9. 

 

 

Fig. 9. The measured values of the absorption lines for the P branch 

and R branch (dots) and the model predictions (crosses). 

 

Overall, we can conclude that there is an excellent agreement between 

the predictions from our simple model and measurements. 
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SCHRODINGER EQUATION: 

          ROTATIONAL MOTION DIATOMIC MOLECULES 

 

The wavefunctions for the rigid rotor model are found from solving 

the time-independent Schrödinger Equation for the eigenvalues ER 

and eigenfunction ( )r  

 ˆ ( ) ( )RH r E r =  

where the Hamiltonian operator is 

 
2

2ˆ ( )
2

H U r
m

−
=  +  

where  ∇2 is the Laplacian operator and is best expressed in spherical 

coordinates 

 
2

2 2

2 2 2 2 2

1 1 1
sin

sin sin
r

r rr r r


   

       
 = + +   

       
 

 

We can simply things by making two assumptions: 

• The distance between the two masses is fixed. This causes the 

terms in the Laplacian containing ∂ / ∂r  to be zero. 

• The orientation of the masses is completely described by θ and  

ϕ and in the absence of electric or magnetic fields the energy is 

independent of orientation. This causes the potential energy 

( )U r  portion of the Hamiltonian to be zero. 
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The wavefunctions ( , )    are customarily represented by ( , )Y    

and are called the spherical harmonics. 

 

The Hamiltonian operator can now be given by 

 
2 2

2 2

1 1ˆ sin
2 sin sin

H
I


    

 −    
= +  

    
 

 

The Schrödinger Equation becomes 

 
2 2

2 2

1 1
sin ( , ) ( , )

2 sin sin
RY E Y

I
    

    

 −    
+ =  

    
 

 

The Schrödinger equation can be solved using separation of variables. 

 ( , ) ( ) ( )Y    =    

 

Azimuthal angle ( )  

 

2
2

2

1 d
m

d


= −


                 m is the separation constant 

The solution for the azimuthal angle is 

 ( )
1

( ) exp
2

i m 


 =  

A complete rotation through 2  rad must leave the molecule in the 

same orientation and this can only happen if 

 0, 1, 2, 3,m =     
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Polar angle ( )  

The quantum (wave-mechanical) value of the angular momentum L 

and the rotation energy ER(J) are 

 
2

2 2

2

2
( 1) ( 1) ( 1)

2

R
R

I E
L J J E J J J J

I
= + = + = +  

where J is the rotational level, J = 0, 1, 2, 3, … 

 

Therefore, the Schrodinger equation for the azimuthal angle is 

 
2 2

2 2

cos
( 1) 0

sin sin

d d m
J J

dd



  

  
+ + + −  = 

 
 

 

Th solutions , ( )J m   of this ODE are called the Legendre functions 

which are functions of sine and cosine terms. Solutions are only 

physical acceptable if J and m has the values  

                 0, 1, 2, 3,... 0, 1, 2, 3, ,J m J= =     

 

 So, the eigenfunctions for the rotational motion of a diatomic 

molecule are the spherical harmonics whose values depend upon the 

values assigned to J and m 

 , ,( , ) ( ) ( )J m J m mY    =    

and the allowed values for J and m are 

 0, 1, 2, 3,... 0, 1, 2, 3, ,J m J= =     

where J is called the orbital quantum number and m the magnetic 

quantum number.   (Note: J l ) 
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Azimuthal angle ( )  

 

The polar angle is 0 2    and the polar eigenfunction is 

 ( )
1

( ) exp
2

i m 


 =  

 

The probability density is 

 
* 1
( ) ( )

2
 


  =                independent of   

 

and the probability of finding the orientation of the molecule in in the 

region from 0 to 2  is 

 

       ( )
2

0

1
0 2 1

2
probability d


  


  = =  

 

So, we never can know the orientation of the molecule, we only know 

that there is an equal probability of finding the polar orientation of the 

molecule at any angle   when measured. 
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