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qm061S.py    Spherical harmonics plotted on a unit sphere. 

 

qm061R.py    Spherical harmonics polar plots 

   GitHub 

 

   Google Drive 
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INTRODUCTION 

It is often better to use the spherical coordinate system rather than 

the Carestian coordinate system in modelling quantum systems. For 

example, an electron is attracted to the nucleus by the Coulomb force 

between opposite charges. This is known as a central force, one that 

is directed toward a fixed point. 

 

The spherical coordinates about an Origin O are ( ), ,r    

r         radius line 

        polar angle  [rad] 

          azimuthal angle  [rad] 

 

 

Fig. 1.   Spherical coordinate system. 
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Just like energy for a bound particle is quantized, the angular 

momentum L  is also quantized. However, unlike energy, the angular 

momentum is a vector which has three components. For physically 

accepted wavefunctions for the angular momentum, not all angular 

momentum components can be known simultaneously. This is 

because the uncertainty principle applies to angular momentum just as 

it does to the momentum. The uncertainty principle for angular 

momentum is 

 

It is impossible to specify simultaneously any two components of 

angular momentum – if one component of the angular momentum L  

is sharp, then the remaining two components must be fuzzy. 

 

Thus, we can have L  and zL  sharp (i.e. quantized) and the 

wavefunctions for L  and zL are the spherical harmonics.  The time-

independent state wavefunctions are given by 

 ( ) ( , , ) ( ) ( ) ( )r r R r     = =    

 

The time-independent Schrödinger Equation for the eigenvalues E 

and eigenfunction ( )r  

 ˆ ( ) ( )H r E r =  

where the Hamiltonian operator is 

 
2

2ˆ ( )
2

H U r
m

−
=  +  
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where ∇2 is the Laplacian operator in spherical coordinates is 

 
2

2 2

2 2 2 2 2

1 1 1
sin

sin sin
r

r rr r r


   

       
 = + +   

       
 

 

We can rewrite the Schrodinger equation as three separate equations: 

• Radial equation        ( )R r  

• Polar equation           ( )  

• Azimuthal equation   ( )  

and solve each of these equations independently. 

 

Radial wavefunction  ( )R r  

 
2 2 2

2 2

( ) 2 ( ) ( 1)
( ) ( ) ( ) ( )

2 2

d R r dR r l l
R r U r R r E R r

m r drdr m r

 − +
+ + + = 

 
 

 

The radial wave equation determines the radial part of the 

wavefunction ( , , )r   and the allowed particle energies E. This 

radial wave equation is valid for any central force. The radial 

wavefunction ( )R r  for the state (n,l) is normalized 

2 2

0
( ) 1n lR r r dr



=  

 

where n is the principal quantum number and l is the orbital quantum 

number. 
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Azimuthal equation  ( )  

2
2

2

1
l

d
m

d


= −


                 ml is the separation constant 

 

The solution for the azimuthal wavefunction ( )  is  

 ( )
1

( ) exp
2

li m 


 =                  normalized 

where 0 2    ( )  −   . 

 

A complete rotation through 2  rad must leave the quantum system 

in the same state, thus, for physically acceptable solution, ml can only 

have values 

 0, 1, 2, 3,lm =     

 

ml is known as the magnetic quantum number. 

 

The probability density is 

 
* 1
( ) ( )

2
 


  =                independent of   

 

and the probability of finding the azimuthal orientation of the 

molecule in the region from 0 to 2  is 

       ( )
2

0

1
0 2 1

2
probability d


  


  = =  
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So, we never can know the orientation of the molecule, we only know 

that there is an equal probability of finding the azimuthal angle   

when measured. 

 

The azimuthal wavefunction can be expressed in terms of its real and 

imaginary parts 

 ( ) ( ) ( )
1 1

( ) ex
2

cosp sin
2

l l li m m i m   
 

  = = +   

  

We can visualize the azimuthal wavefunctions using xy plots and 

polar plots (figures 2A and 2B) . 

 

We can now find the eigenfunctions and eigenvalues of the operator 

for the z-component of the angular momentum ˆ
zL  

 ˆ
zL i




 −


 

 ( )lim

li e m





− =


 

So, lim
e


 =  are the eigenfunctions of the operator ˆ

zL  and their 

corresponding eigenvalues are z lL m= . 

 

The real part of ( )  is a cosine function and the imaginary part is a 

sine function. ml gives the number of complete cycles of the 

azimuthal wavefunction within the range 0 to 2 for  (figure 2). 
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Fig. 2A.  Azimuthal wavefunction () (not normalized): real 

part a cosine function (blue) and imaginary part a sine function 

(red). The azimuthal function is single valued at  = 0 and  = 

2 rad. ml gives the number of cycles in the azimuthal 

wavefunction for 0 2   .          qp061.py 
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Fig. 2B. Polar plots of the real parts (blue), imaginary parts (black) of 

the azimuthal wavefunction and the probability density function 

(red). Note: the probability density is independent of the azimuthal 

angle  .  The Z-axis is along the line 0o-180o.              qm061.py 
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Polar equation  ( )  

 
22

2 2

cos
( 1) 0

sin sin

lmd d
l l

dd



  

  
+ + + −  = 

 
 

 

where l (l + 1) is a separation constant. 

 

Th solutions , ( )l m   of this ODE are called the associated Legendre 

functions which are functions of sine and cosine terms. Solutions are 

only physical acceptable if l and ml have the values  

                 0, 1, 2, 3,... 0, 1, 2, 3, ,ll m l = =      

 

l is called the orbital quantum number and ml the magnetic 

quantum number.   (Note: chemists often use J not l,  J l ) 

 

The wavefunction for the angular dependence can be expressed in 

terms of spherical harmonics where 

 , ,( , ) ( ) ( )
l ll m l m mlY    =    

 

The separation constants l and ml relate to the allowed values of the 

angular momentum and its z component. 

   

 

( 1) 0, 1,2,3, ...

0, 1, 2, 3, , )z l l

L l l l

L m m l

= + =

= =    
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The solution of the polar equation in   are known as the associated 

Legendre functions , (cos )
ll mP   

 ,( ) (cos )
ll mP    

 

The full angular dependence described by the spherical harmonics for 

the central force wavefunction now becomes 

 , ,( , ) ( ) ( )
l ll m l m mlY P   =   

 

and for a normalized function   

 
2

*
, ,

0 0
( , ) ( , )sin 1

l ll m l mY Y d d
 

       =   

  

Note: The probability density function probD is independent of the 

azimuthal angle since 

 0
1l lim im

e e e
 −

= =  

 
* *

, , , ,( ) ( , ) ( , ) ( ) ( )
l l l ll m l m l m l mprobD Y Y P P      = =  

  

 

The spherical harmonics can be computed in Python using the Code 

 import scipy.special 

 from scipy.special import sph_harm 

 Y = sph_harm(mL,L,phi,theta).real 

 

From the spherical harmonics function we can get the associated 

Legendre function by setting   = 0. 



11 

 

qm061A.py       Note: for clarity  l is used for L in the Code. 

Input cell 

 #%%  INPUTS >>>>> 

         L = 3             # ORBITAL QUANTUM NUMBER 

         mL = 0            # MAGNETIC QUANTUM NUMBER 

         N = 599           # number of grid points 

         phi = 0           # azimuthal angle  [rad]  

                                 # if phi = 0 --> Legendre function 

Setup cell 

 #%%  SETUP 

theta = linspace(0,pi,N)                # polar angle  [ra] 

Y = sph_harm(abs(mL),L,phi,theta).real     # spherical harmonics 

probD = Y*Y                                   # probability density 

fn = 2*pi*Y*Y*sin(theta)              # check normalization 

prob = simps(fn,theta)                 # probability = 1  

print('check probability = 1:  prob = %2.3f' % prob) 

 

The variable prob gives the probability of finding the orientation of 

the angular momentum L̂  in space.  

 

The variable probD is the probability density for the angular 

momentum L̂  having a polar angle   

 
*

, ,( ) ( , ) ( , )
l ll m l mprobD Y Y    =      independent of   

*
, ,( ) ( ) ( )

l ll m l mprobD P P  =  
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Fig. 3.  The orientation of the angular momentum vector L is specified 

by its polar angle   and azimuthal angle  .The orientation 

probability density depends only upon  . The magnitudes of the 

angular momentum and its z-component are quantized, but we have 

no knowledge of the x-component and the y-component. There is zero 

probability of the angular momentum being aligned along the Z-axis. 
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The following figures (figure 4) show plots for , ( , )
ll mY   and 

*
, ,( , ) ( , )

l ll m l mY Y    . When 0 =  then you get plots of the Associated 

Legendre functions as  

, ,0 (0) 1 ( ,0) ( )l

l l l

i m

m l m l me Y P
  −

=  = = =  
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Fig. 4.  Plots for , ( , )
ll mY   and 

*
, ,( , ) ( , )

l ll m l mY Y    . In the polar 

format ( )
2

,Y   ,  if you rotate the curve around the 180o – 0o axis, 

you can visualize the [3D] pattern for the spherical harmonics. 
qm061A.py 

 

The Code qm061C.py can be used to graph [3D] surface plots of the 

spherical harmonics , ( , )
ll mY     (figure 5). 
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Fig. 5.  Spherical harmonics.  Note: that all the spherical harmonics 

are rotationally symmetric about the Z-axis. In the Python figure 

Window you can rotate the [3D] plots.  qm061C.py 
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ANGULAR MOMENTUM: SPACE QUANTIZATION 

The magnitude of the orbital angular momentum magnitude L  and 

its projection along the z-axis Lz, are both sharp and quantized 

according to the restrictions imposed by the orbital and magnetic 

quantum numbers, respectively. Together, l and ml specify the 

orientation of the angular momentum vector L . The direction of L  

being quantized with respect to the Z-axis (arbitrary axis) is referred 

to as space quantization. 

 

Fig. 6.   Allowed projections of L  onto the Z-axis for l = 2.  From a 

[3D] perspective, L  lies on the surface of a cone. The fuzzy character 

of Lx and Ly are shown by allowing L  to precess about the Z-axis, so 

that Lx and Ly change continually while Lz maintains the fixed value 

Lz  = lm . 



18 

 

SPHERICAL HARMONICS (further notes) 

Reference 

 https://irhum.github.io/blog/spherical-harmonics/index.html 

Spherical harmonics are powerful mathematical tools, allowing us to 

represent any function on a sphere. That is, spherical harmonics are 

basis functions defined on a spherical surface. A function ( , , )f x y z  

defined on the unit sphere can be expressed as 

,

0

2 2 2

( , , ) ( , , )

1

l l

l

l

l m lm

l m l

f x y z a Y x y z

x y z



=− =−

=

+ + =

 
 

 

l is the degree of the function and can be though of as a “frequency”: 

l = 1 gives 1 cycle, l = 2 gives 2 cycles, ... .  as shown in figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

https://irhum.github.io/blog/spherical-harmonics/index.html


19 

 

 

Fig. 7. Visualization of the spherical harmonics for l = 2. 
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Fig. 8.  Polar plots of the probability density for the alignment of the 

angular momentum. The Z-axis is along the 0o-180o lines. The 

probability density is indpendent of the azimuthal angle. Blue and red 

indicate opposite signs of the wavefunction. The distance from the 

Origin to the coloured curves is proportional to the probaility density 

*
, ,( ) ( , ) ( , )

l ll m l mprobD Y Y    = . 


