
1

 DOING PHYSICS WITH PYTHON

SOLVING THE [2D] SCHRODINGER

EQUATION FOR PROPAGATING MATTER

WAVES

Ian Cooper

matlabvisualphysics@gmail.com

DOWNLOAD DIRECTORY FOR PYTHON SCRIPTS

qm2DA.py Propagation of a free [2D] Gaussian pulse

qm2DB.py Potential barrier: wall U0 > 0 or cliff U0 < 0

qm2DC.py Potential barrier: single slit

qm2DD.py Potential barrier: double slit

qm2DE.py Potential barrier: Coulomb repulsion

 GitHub

 Google Drive

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb

2

TIME-DEPENDENT QUANTUM-MECHANICAL SCATTERING

 IN TWO DIMENSIONS

THE FINITE DIFFERENCE TIME DEVELOPMENT METHOD

A finite difference time development method (FDTD) is used to solve

the two-dimensional time dependent Schrodinger Equation. This

method is applied to the free propagation of a Gaussian pulse and the

scattering of the pulse from different potential energy functions: wall,

cliff, single slit, double slit and Coulomb (Rutherford scattering). The

results of the computations are presented as colour graphs portraying

the probability density function. The amplitude of the probability for

the scattered wave is often very small, so the probability density is

scaled to better display the scattering. Arbitrary units are used for all

quantities. Values of the wavefunction and potential energy are

calculated on a [2D] mesh for a square of length 1. The centre of the

square has Cartesian coordinates (0.5, 0.5). The initial wavefunction

is a propagating [2D] Gaussian pulse. The wavefunction is zero at the

boundaries of the square. So, when the wave packet strikes the

boundaries, reflections occur. This results in interference patterns

developing because of the superposition of the incident and reflected

waves.

3

THE 2-DIMENSIONAL SCHRODINGER EQUATION

The Schrodinger equation in [2D] and Cartesian coordinates (x, y) can

be expressed as

 (1)
2 2 2

2 2

(, ,)
(,) (, ,)

2

x y t
i U x y x y t

t m x y




   −  
= + +  

    

The wavefunction (, ,)x y t is a complex function

 (2) (, ,) (, ,) (, ,)
R I

x y t x y t x y t  = +

where the real part of the wavefunction is (, ,)
R

x y t and its

imaginary part is (, ,)
I

x y t .

Using equations 1 and 2 and equating the real and imaginary parts, the

Schrodinger equation becomes

 (3A) ()
2 2

2 2
/

2

I
R

U
t m x y




    
= + −  

    

 (3B) ()
2 2

2 2
/

2

R
I

U
t m x y




    
= − + +  

    

We can use the FDTD method to solve the [2D] Schrodinger equation

using equation 3.

4

Time and position are defined at a set of discrete points

 (4A)

 () 1, 2, 3, ..., (1) ()
t t t t t t

t n n t n N t t n t n=  =  = + −

 (4B)

 () 1, 2, 3, ..., (1) ()
x x x x x x

x n n x n N x x n t n=  =  = + −

 (4C)

 () 1, 2, 3, ..., (1) ()
y y y y y y

x n n y n N y t n t n=  =  = + −

The finite difference approximation assumes that the derivates of a

function can be expanded in a Taylor series around every point of the

mesh up to a desired order of accuracy.

The first derivative can be approximated as

 (5A) 1
() () ()

n n n
f x f x f x

t t

−
 −

=
 

 forward difference

 (5B) 1 1
() () ()

2

n n n
f x f x f x

t t

+ −
 −

=
 

 central difference

The second derivative is approximated as

 (5C)
2

1

2 2

() () 2 () (1)
n n n n

f x f x f x f x

x x

+
 − − −

=
 

5

The finite difference approximation from equations 1 to 5 at time step

nt for the mesh point (,)
x y

n n becomes

 (6A) time steps t n t+ 

()

()

2

2

(, ,) (, , 1)

(1, ,) 2 (, ,) (1, ,)
2

(, 1,) 2 (, ,) (, 1,)
2

(,)
(, ,)

R x y t R x y t

I x y t I x y t I x y t

I x y t I x y t I x y t

x y

I x y t

n n n n n n

t
n n n n n n n n n

m y

t
n n n n n n n n n

m y

tU n n
n n n

 

  

  



= −

 
− + − + − 

 

 
− + − + − 

 

 
+  
 

 (6B) time steps / 2t n t+ 

()

()

2

2

(, ,) (, , 1)

(1, ,) 2 (, ,) (1, ,)
2

(, 1,) 2 (, ,) (, 1,)
2

(,)
(, ,)

I x y t I x y t

R x y t R x y t R x y t

R x y t R x y t R x y t

x y

R x y t

n n n n n n

t
n n n n n n n n n

m x

t
n n n n n n n n n

m y

tV n n
n n n

 

  

  



= −

 
+ + − + − 

 

 
+ + − + − 

 

 
−  
 

We can let

2 2

0.2 1 1
2 2

t t
f m x y

m x m y

 
= =  = =  = 

 

f < 0.2 for stability of the numerical procedure. So, the time step must

be
2

2t x f =  .

6

PYTHON CODE qm2DA.py

The Script qm2DA.py uses arbitrary units ()1 1m = = for all

quantities. The initial pulse is a plane wave with a [2D] Gaussian

envelope. The number 1 attached to a variable represents the current

time and 2 represents the value of the variable at the next time step.

Set up for xy-grid

#%% SETUP XY GRID

Number of time Steps [400]

nT = 600

Mesh points X and y [180] and XY grid

N = 208

G = linspace(0,1,N)

xG, yG = np.meshgrid(G,G)

dx = G[2] - G[1]

Constant in S.E. and time step

f = 0.2 # f < 0.2

dt = 2*dx**2*f

Setting up the initial wavefunction

[2D] GAUSSIAN PULSE (WAVE PACKET)

Initial centre of pulse

x0 = 0.20; y0 = 0.5

Wavenumber

7

k0 = 100

Initial amplitude of pulse

A = 10

Pulse width: sigma squared

s = 10e-3

Envelope

psiE = A*exp(-(xG-x0)**2/s)*exp(-(yG-y0)**2/s)

Plane wave propagation in +X direction

psiP = exp(1j*k0*xG)

Wavefunction

psi1 = psiE*psiP

Probability Density

prob1 = np.conj(psi1)*psi1

Extract Real and Imaginary parts

R1 = np.real(psi1); I1 = np.imag(psi1)

Fig 1. Initial pulse: grid 1x1, pulse centre (0.2, 0.5). qm2DA.py

The wavefunction is called at each successive time step and half-time

step by calling the functions fI and fR

8

FDTD method for solving equation 6

#%% FUNCTIONS

def fI(I1,R1):

 I2 = zeros([N,N])

 for x in range(2,N-1,1):

 for y in range(2,N-1,1):

 I2[x,y] = I1[x,y] + f*(R1[x+1,y] - 2*R1[x,y] + R1[x-1,y]

 + R1[x,y+1] -2*R1[x,y] + R1[x,y-1]) - dt*U[x,y]*R1[x,y]

 return I2

def fR(I1,R1):

 R2 = zeros([N,N])

 for x in range(2,N-1,1):

 for y in range(2,N-1,1):

 R2[x,y] = R1[x,y] - f*(I1[x+1,y] - 2*I1[x,y] + I1[x-1,y]

 + I1[x,y+1] - 2*I1[x,y] + I1[x,y-1]) + dt*U[x,y]*I1[x,y]

 return R2

Computing the probability function after nT time steps. The Code is

run for an increasing number of time steps to show the propagation of

the matter wave in the x-direction.

for c in range(1,nT,1):

Update real part of wavefunction

 R2 = fR(I1,R1); R1 = R2

Update imaginary part of wavefunction

 I2 = fI(I1,R1)

Probability Density Function

 probD = R2**2 + I1**2

 I1 = I2

9

Simulation 1: Free propagation of the pulse

We can model the free propagation of the pulse moving in the X

direction. The potential energy function is set to zero at all mesh

points.

Fig. 2. Zero potential energy field. Red arrow shows direction of

propagation of the [2D] pulse.

Figure 3 shows a time sequence view for the motion of the matter

wave at time steps 200, 400, and 600 when k0 = 100 and for k0 =50 at

time step 600. As the matter wave propagates, it spreads in all

directions. The spreading is due to the different wavelength

components of the wave packet travelling at different speeds.

Components with larger wave numbers (smaller wavelengths)

corresponds to waves of larger momentum, energy and velocity.

Thus, the speed of propagation v is proportional to the propagation

constant k.

 (7)
2 2 2

/ / 2 / 2 /p k h E p m k m v k m= = = = =

10

Fig. 3. Pulse propagation in the X-direction. Red dot shows the initial

position of the pulse.

11

For k0 = 100 and 600 time steps, the displacement of the pulse is

0.577 a.u. and the pulse velocity is 9.61 a.u. For k0 = 50 and 600 time

steps, the displacement of the pulse is 0.297 a.u. and the pulse

velocity is 4.95 a.u. The ratio of the propagation constants is

100/50 = 2 and the ratio of the velocities is 9.61/4.95 = 1.94 ~ 2 as

predicted by equation 7.

The spreading of a pulse is a subtle example of Heisenberg

Uncertainty Principal and the superposition of states. Since the extent

of the wavefunction is restricted, then the uncertainty in momentum

must be greater than zero. Therefore, the wavefunction must contain

components other than k0 and these can combine in such a way that at

time t = 0 for the wavefunction to travel only in the +X direction.

However, at later times, the components will add so that the

wavefunction propagates in the Y direction as well, and thus the

wavefunction spreads in all directions as time evolves (figure 4).

Fourier analysis

Consider a function of x, h(x). Then its Fourier transform H(k) is

 (8) ()() ()expH k h x i k x dx


−
= −

It is a simple matter to evaluate the Fourier transform by direct

integration using Simpson’s rule rather than by the FFT method.

12

Fig. 4. Initial Gaussian pulse h(xf) with propagation constant k0 =

100 and its Fourier transform H(kf) and the power spectral density

psd(kf). qm2DA.py

13

Code qm2DA.py for the Fourier transform

xf = linspace(-0.2,0.2,2001)

h = A*exp(-xf**2/s)*exp(1j*k0*xf)

kmax = 200

kmin = 0

nF = 2001

kf = np.linspace(kmin,kmax,nF)

HR = np.zeros(nF); HI = HR; H = HR+HR*1j

for c in range(nF):

 g = h*np.exp(-1j*kf[c]*xf)

 HR[c] = simps(np.real(g),xf)

 HI[c] = simps(np.imag(g),xf)

 H[c] = simps(g,xf)

psd = 2*(H**2)

psd = np.real(psd/max(psd))

14

Simulation 2 [2D] Pulse striking a potential wall

qm2DB.py

The scattering of the [2D] pulse depends upon the relative values of

the pulse energy E and the height of the potential wall U0.

The potential energy function U(x,y) is given by

 U = 0 x < 0.5

 U = U0 0.5x  U0 > 0

Fig. 5. The potential wall (repulsive barrier). qm2DB.py

The energy of the pulse can be taken as ()2

0
1 1E k m= = = .

When k0 = 100 a.u., E = 10 000 a.u.

Figure 6 shows the scattering for a potential wall of different heights.

At the repulsive barrier, both reflection and transmission occur. The

incident pulse and reflected pulse interfere with each producing a

sequence of interference fringes.

15

Fig. 6A. Pulse striking the repulsive barrier where E > U0.The

incident and reflected waves interfere and

16

Fig. 6B. Pulse striking a repulsive barrier where E < U0.

Simulation 3 [2D] Pulse striking a potential cliff

qm2DB.py The pulse is scattered by a potential cliff as shown in

figure 7.

Fig. 7. A potential cliff: U0 =-1000 a.u

17

Fig. 8. Scattering by a potential cliff. The pulse is reflected and

transmitted at the cliff edge. The incident and reflected waves

interfere and produce the interference fringes. You also observe

interference fringes at the extreme right of the image due to

reflections at the boundary.

18

Simulation 4 Pulse striking a single slit

qm2DC.py

This is a simulation of the scattering of an electron by a single slit.

The pulse is reflected by the barrier and diffracted at the slit as it

passes through the it.

Fig. 9. Potential energy function for single slit.

Fig. 10. Single slit diffraction. The pulse spreads (diffracts) in

passing through opening. Most of the pulse is reflected at the

potential barrier and interferes with the incident wave creating

an interface pattern.

19

Simulation 5 Pulse striking a double slit

qm2DD.py

This is a simulation of the scattering of an electron by a double slit.

The matter wave is reflected by the barrier and diffracted at the slit as

it passes through the it.

Fig. 11. Potential energy function for double slit.

Fig. 12. Double slit diffraction. Pulse spreads (diffracts) in

passing through opening. A very predominant interference

pattern is displayed with very distinct regions of constructive

and destructive interference. The pulse is reflected at the

potential barrier and interferes with the incident wave creating

an interface pattern.

