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TIME-DEPENDENT QUANTUM-MECHANICAL SCATTERING 

 IN TWO DIMENSIONS 

THE FINITE DIFFERENCE TIME DEVELOPMENT METHOD 

A finite difference time development method (FDTD) is used to solve 

the two-dimensional time dependent Schrodinger Equation. This 

method is applied to the free propagation of a Gaussian pulse and the 

scattering of the pulse from different potential energy functions: wall, 

cliff, single slit, double slit and Coulomb (Rutherford scattering). The 

results of the computations are presented as colour graphs portraying 

the probability density function. The amplitude of the probability for 

the scattered wave is often very small, so the probability density is 

scaled to better display the scattering. Arbitrary units are used for all 

quantities. Values of the wavefunction and potential energy are 

calculated on a [2D] mesh for a square of length 1. The centre of the 

square has Cartesian coordinates (0.5, 0.5). The initial wavefunction 

is a propagating [2D] Gaussian pulse. The wavefunction is zero at the 

boundaries of the square. So, when the wave packet strikes the 

boundaries, reflections occur. This results in interference patterns 

developing because of the superposition of the incident and reflected 

waves.  
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THE 2-DIMENSIONAL SCHRODINGER EQUATION 

The Schrodinger equation in [2D] and Cartesian coordinates (x, y) can 

be expressed as 
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The wavefunction ( , , )x y t  is a complex function   
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Using equations 1 and 2 and equating the real and imaginary parts, the 

Schrodinger equation becomes 
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We can use the FDTD method to solve the [2D] Schrodinger equation 

using equation 3.  
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Time and position are defined at a set of discrete points 

    (4A)  
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The finite difference approximation assumes that the derivates of a 

function can be expanded in a Taylor series around every point of the 

mesh up to a desired order of accuracy.  

 

The first derivative can be approximated as 
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The second derivative is approximated as 
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The finite difference approximation from equations 1 to 5 at time step 

nt for the mesh point ( , )
x y

n n becomes 
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We can let  
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f < 0.2 for stability of the numerical procedure. So, the time step must 

be 
2
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PYTHON CODE    qm2DA.py     

The Script qm2DA.py   uses arbitrary units ( )1 1m = =  for all 

quantities. The initial pulse is a plane wave with a [2D] Gaussian 

envelope. The number 1 attached to a variable represents the current 

time and 2 represents the value of the variable at the next time step. 

 

Set up for xy-grid 

#%% SETUP XY GRID 

# Number of time Steps [400] 

nT = 600 

# Mesh points X and y  [180] and XY grid 

N = 208 

G = linspace(0,1,N) 

xG, yG = np.meshgrid(G,G) 

dx = G[2] - G[1] 

# Constant in S.E. and time step 

f = 0.2             # f < 0.2 

dt = 2*dx**2*f 

 

Setting up the initial wavefunction 

# [2D] GAUSSIAN PULSE (WAVE PACKET)  

# Initial centre of pulse 

x0 = 0.20;  y0 = 0.5 

# Wavenumber 
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k0 = 100 

# Initial amplitude of pulse  

A = 10 

# Pulse width: sigma squared 

s = 10e-3 

 

# Envelope 

psiE = A*exp(-(xG-x0)**2/s)*exp(-(yG-y0)**2/s) 

# Plane wave propagation in +X direction 

psiP = exp(1j*k0*xG) 

# Wavefunction 

psi1 = psiE*psiP 

# Probability Density   

prob1 = np.conj(psi1)*psi1 

# Extract Real and Imaginary parts 

R1 = np.real(psi1);  I1 = np.imag(psi1) 

 

Fig 1.   Initial pulse: grid 1x1, pulse centre (0.2, 0.5).   qm2DA.py 

 

The wavefunction is called at each successive time step and half-time 

step by calling the functions fI and fR 
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FDTD method for solving equation 6 

#%% FUNCTIONS 

def fI(I1,R1): 

  I2 = zeros([N,N]) 

  for x in range(2,N-1,1): 

    for y in range(2,N-1,1): 

       I2[x,y] = I1[x,y] + f*(R1[x+1,y] - 2*R1[x,y] + R1[x-1,y] 

                         +    R1[x,y+1]  -2*R1[x,y] + R1[x,y-1]) - dt*U[x,y]*R1[x,y]   

  return I2  

 

def fR(I1,R1): 

  R2 = zeros([N,N]) 

  for x in range(2,N-1,1): 

    for y in range(2,N-1,1): 

       R2[x,y] = R1[x,y] - f*(I1[x+1,y] - 2*I1[x,y] + I1[x-1,y] 

                         +    I1[x,y+1] - 2*I1[x,y] + I1[x,y-1]) + dt*U[x,y]*I1[x,y]   

  return R2 

 

Computing the probability function after nT time steps. The Code is 

run for an increasing number of time steps to show the propagation of 

the matter wave in the x-direction.      

for c in range(1,nT,1): 

# Update real part of wavefunction     

  R2 = fR(I1,R1); R1 = R2 

# Update imaginary part of wavefunction 

  I2 = fI(I1,R1) 

# Probability Density Function   

  probD = R2**2 + I1**2 

  I1 = I2 
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Simulation 1: Free propagation of the pulse 

We can model the free propagation of the pulse moving in the X 

direction. The potential energy function is set to zero at all mesh 

points. 

 

Fig. 2.   Zero potential energy field. Red arrow shows direction of 

propagation of the [2D] pulse. 

 

Figure 3 shows a time sequence view for the motion of the matter 

wave at time steps 200, 400, and 600 when k0 = 100 and for k0 =50 at 

time step 600. As the matter wave propagates, it spreads in all 

directions. The spreading is due to the different wavelength 

components of the wave packet travelling at different speeds. 

Components with larger wave numbers (smaller wavelengths) 

corresponds to waves of larger momentum, energy and velocity. 

Thus, the speed of propagation v is proportional to the propagation 

constant k. 

      (7)     
2 2 2
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Fig. 3. Pulse propagation in the X-direction. Red dot shows the initial 

position of the pulse. 
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For k0 = 100 and 600 time steps, the displacement of the pulse is 

0.577 a.u. and the pulse velocity is 9.61 a.u. For k0 = 50 and 600 time 

steps, the displacement of the pulse is 0.297 a.u. and the pulse 

velocity is 4.95 a.u.  The ratio of the propagation constants is 

100/50 = 2 and the ratio of the velocities is 9.61/4.95 = 1.94 ~ 2 as 

predicted by equation 7.  

 

The spreading of a pulse is a subtle example of Heisenberg 

Uncertainty Principal and the superposition of states. Since the extent 

of the wavefunction is restricted, then the uncertainty in momentum 

must be greater than zero. Therefore, the wavefunction must contain 

components other than k0 and these can combine in such a way that at 

time t = 0 for the wavefunction to travel only in the +X direction. 

However, at later times, the components will add so that the 

wavefunction propagates in the Y direction as well, and thus the 

wavefunction spreads in all directions as time evolves (figure 4). 

 

Fourier analysis 

Consider a function of x, h(x). Then its Fourier transform H(k) is 

 (8)         ( )( ) ( )expH k h x i k x dx


−
= −  

 

It is a simple matter to evaluate the Fourier transform by direct 

integration using Simpson’s rule rather than by the FFT method.  
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Fig. 4.   Initial Gaussian pulse h(xf) with propagation constant k0 = 

100 and its Fourier transform H(kf) and the power spectral density 

psd(kf).                    qm2DA.py  
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Code qm2DA.py for the Fourier transform 

 

xf = linspace(-0.2,0.2,2001) 

h =  A*exp(-xf**2/s)*exp(1j*k0*xf)  

kmax = 200 

kmin = 0 

nF = 2001 

kf = np.linspace(kmin,kmax,nF) 

HR = np.zeros(nF); HI = HR; H = HR+HR*1j 

for c in range(nF): 

     g = h*np.exp(-1j*kf[c]*xf) 

     HR[c] = simps(np.real(g),xf) 

     HI[c] = simps(np.imag(g),xf) 

     H[c] = simps(g,xf) 

psd = 2*(H**2)    

psd = np.real(psd/max(psd))    
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Simulation 2        [2D] Pulse striking a potential wall 

qm2DB.py 

The scattering of the [2D] pulse depends upon the relative values of 

the pulse energy E and the height of the potential wall U0.  

The potential energy function U(x,y) is given by 

               U = 0           x < 0.5 

               U = U0        0.5x                U0 > 0 

 

Fig. 5. The potential wall (repulsive barrier).            qm2DB.py 

 

The energy of the pulse can be taken as ( )2

0
1 1E k m= = = . 

When k0 = 100 a.u., E = 10 000 a.u.  

 

Figure 6 shows the scattering for a potential wall of different heights. 

At the repulsive barrier, both reflection and transmission occur. The 

incident pulse and reflected pulse interfere with each producing a 

sequence of interference fringes. 
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Fig. 6A.  Pulse striking the repulsive barrier where E > U0.The 

incident and reflected waves interfere and  
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Fig. 6B. Pulse striking a repulsive barrier where E < U0. 

 

Simulation 3        [2D] Pulse striking a potential cliff 

qm2DB.py    The pulse is scattered by a potential cliff as shown in 

figure 7.  

 
Fig. 7.   A potential cliff: U0 =-1000 a.u 
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Fig. 8.   Scattering by a potential cliff. The pulse is reflected and 

transmitted at the cliff edge. The incident and reflected waves 

interfere and produce the interference fringes. You also observe 

interference fringes at the extreme right of the image due to 

reflections at the boundary. 
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Simulation 4        Pulse striking a single slit  

qm2DC.py 

This is a simulation of the scattering of an electron by a single slit. 

The pulse is reflected by the barrier and diffracted at the slit as it 

passes through the it.  

 

 
Fig. 9.  Potential energy function for single slit. 

 

Fig. 10.  Single slit diffraction. The pulse spreads (diffracts) in 

passing through opening. Most of the pulse is reflected at the 

potential barrier and interferes with the incident wave creating 

an interface pattern.   
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Simulation 5        Pulse striking a double slit  

qm2DD.py 

This is a simulation of the scattering of an electron by a double slit. 

The matter wave is reflected by the barrier and diffracted at the slit as 

it passes through the it. 

 

Fig. 11.  Potential energy function for double slit. 

 

Fig. 12.  Double slit diffraction. Pulse spreads (diffracts) in 

passing through opening. A very predominant interference 

pattern is displayed with very distinct regions of constructive 

and destructive interference. The pulse is reflected at the 

potential barrier and interferes with the incident wave creating 

an interface pattern.  


