VISUAL PHYSICS ONLINE

DYNAMICS TYPES OF FORCES VELOCITY DEPENDENT FORCES ROLLING RESISTANCE

VELOCITY DEPENDENT FORCES

The force of **friction** acting on the object sliding along a surface is nearly independent of the speed of the object. However, other types of resistance to motion are velocity dependent. The resistance force of an object moving through a fluid is called the **drag force** \vec{F}_D .

Viscous drag $F_D \propto v$ low speeds

For a small object moving at low speeds through a fluid such as dust particles, to a good approximation, the resistive force is proportional to the velocity v of the object

$$F_D = -\beta v$$
 viscous drag

- sign since force and velocity are in opposite directions

For the vertical motion of an object through a fluid, the forces acting on the object are the gravitational force F_G (weight) and the resistive force F_D . In our frame of reference, we will take down as the positive direction. The equation of motion of the object is determined from Newton's Second Law.

$$ma = m\frac{dv}{dt} = F_R = mg - \beta v$$
 $a = g - \frac{\beta}{m}v$

where *a* is the acceleration of the object at any instance.

The initial conditions are

t = 0 $v = v_0$ x = 0 $a = -(\beta / m) v_0$

When a = 0, the velocity is constant $v = v_T$ where v_T is the **terminal velocity**

$$0 = m g - \beta v_T$$
$$v_T = \frac{m g}{\beta}$$
terminal velocity

The motion of a 2.0 kg object through a viscous fluid

m = 2.00 kg $\beta = 5.00 \text{ kg.s}^{-1}$ $g = 9.80 \text{ m.s}^{-2}$ $v_T = 3.92 \text{ m.s}^{-1}$

Initial values for velocity v_0 [m.s⁻¹]

blue: 10 red: v₇ magenta: 2 cyan: 0

When you consider the viscous drag acting upon falling objects, heavier objects do fall faster than lighter objects.

Drag at high speeds $F_D \propto v^2$

For objects moving at high speeds, such as, aeroplanes, cricket balls, cars or bikes, the resistance force to a good approximation is proportional to the square of the velocity

$$F_D = -\alpha v^2$$

For the vertical motion of an object through a fluid, the forces acting on the object are the gravitational force F_G (weight) and the resistive force F_D . In our frame of reference, down is the positive direction. The equation of motion of the object is determined from Newton's Second Law.

$$ma = m\frac{dv}{dt} = F_G - F_R = mg - \alpha v^2 \left(v / |v| \right) \qquad a = g - \frac{\alpha}{m} v^2 \left(v / |v| \right)$$

where *a* is the acceleration of the object at any instance. The initial conditions are

$$t = 0$$
 $v = v_0$ $x = 0$ $a = g - (\alpha / m) v_0^2 \left(\frac{v_0}{|v_0|}\right)$

When a = 0, the velocity is constant $v = v_T$ where v_T is the **terminal velocity**

$$0 = m g - \alpha v_T^2 \quad v_T^2 = \frac{m g}{\alpha}$$
$$v_T = \sqrt{\frac{m g}{\alpha}}$$

Example Small rock dropped from rest:

 $m = 0.010 \text{ kg} \quad \alpha = 1.00 \times 10^{-4} \text{ kg.m}^{-1}$

 $v_0 = 0 \text{ m.s}^{-1} \implies v_T = 31.3 \text{ m.s}^{-1}$

<u>VIEW</u>

Interest only article on the motion of falling objects with

resistance

The ferrari has a small frontal area and shaped to reduce **air drag** to give better acceleration and fuel efficiency.

The bike, clothing and helmet are designed to reduce **air drag** which opposes the forward motion of the bike and rider.

ROLLING RESISTANCE

Rolling resistance (rolling friction or rolling drag) is the force resisting the rolling motion when a body such as a ball, tire, or wheel on a surface. It is mainly caused by non-elastic effects where some of the kinetic energy is dissipated as the object rolls along the surface.

In analogy with sliding friction, rolling resistance force F_R is often expressed as a coefficient μ_R times the normal force F_N .

$$F_R = \mu_R F_N$$

The coefficient of rolling resistance μ_R is generally much smaller than the coefficient of sliding friction μ_S .

Why does a rolling sphere slow down?

Because of the deformations of sphere and surface in the contact region, the normal force F_N does not pass through the centre of mass of the sphere and the normal force acts over an area and not a point as in an idealized case. A **torque** τ is produced by the normal force F_N which **slows** down the sphere and then stops it.

VISUAL PHYSICS ONLINE

If you have any feedback, comments, suggestions or corrections please email: Ian Cooper School of Physics University of Sydney ian.cooper@sydney.edu.au