VISUAL PHYSICS ONLINE

 

SPECIAL RELATIVITY and NUCLEAR REACTIONS

NUCLEAR TRANSFORMATIONS

 

 

SUMMARY

 

Total energy

    total energy = rest energy + kinetic energy + potential energy

                       

 Law of conservation mass-energy   isolated system E = constant

 

 

 

The energy released in nuclear reactions can be predicted form the theory of special relativity and the predictions agree extremely well with measured values.

 

 

 

 

 

Energy / Mass      units, values and conversion factors

 

amu (atomic mass unit) = 1 u = 1.66054´10-27  kg

1 eV = 1.602´10-19   J      1 MeV = 106  eV

 

         c = 2.99792´108  m.s-1        

 

A mass of 1 u (1 amu) has an energy equivalent of: 

E = (1.66054´10-27) (2.99792´108)2  J = 1.49242´10-10  J

          E = 931.494 MeV

          1 u º 931.494 MeV/c2

 

Proton mass

mp = 1.67262´10-27   kg = 1.0072765 u = 938.3 MeV/c2

Neutron mass

          mn = 1.67493´10-27   kg = 1.0086649 u = 939.6 MeV/c2

Electron mass

          me = 9.1093897´10-31   kg = 0.0005485799 u = 0.511 MeV/c2

 

 

NUCLEAR TRANSFORMATIONS

 

 

Example 1          12C6   and 13C6   binding energy of the last neutron

 

We can calculate the energy required to remove a single neutron from the nucleus of the isotopes carbon-12 and carbon-13

 

                    Initial state (reactants)      Final state (products)

                                                      12C6      11C6 +  1n0 
                   m(12C6)  = 11.996708520544027  u

                   m(11C6)  = 11.008142131544027 u

                   m(1n0)   =  1.008664915821551 u

 

Mass: Reactants           11.996709  u 

Mass: Products            11.008142  u 

                           1.008665  u 

Mass defect

     dM = -0.020099  u 

Disintegration value Q

     Q = -18.721659  MeV

 

 

 

                    Initial state (reactants)      Final state (products)

                                                      13C6      12C6 +  1n0 
                   m(12C6)  = 11.996708520544027  u

                   m(13C6)  = 13.000063355614028u

                   m(1n0)   =  1.008664915821551 u

 

Mass: Reactants     13.000063  u 

Mass: Products      11.996709  u 

                     1.008665  u 

Mass defect

     dM = -0.005310  u 

Disintegration value Q

     Q = -4.946309  MeV 

 

 

The external work required to remove a neutron from carbon-12 is 18.7 MeV, whereas it required only 4.9 MeV to remove the neutron from carbon-13. Hence, it is much more difficult to remove a neutron from carbon-12 compared with carbon-13.

 

 

Example 2    

Will a reaction “go”?      The isotope carbon-13 is bombarded by 2.5 MeV protons to produce  nitrogen-13 and a neutron. Can the reaction happen?

 

                    Initial state (reactants)      Final state (products)

                                            13C6  +  1H1     13N7 +  1n0

 

Mass: Reactants

     13.000063  u 

     1.007276  u 

Mass: Products

     13.001899  u 

     1.008665  u 

Mass defect

     dM = -0.003224  u 

Disintegration value Q

     Q = -3.002818  MeV  

 

The reaction is endothermic and requires 3 MeV to make the reaction go. Hence, the bombarding protons do not have enough energy for the reaction to occur. The incident proton must have a kinetic energy slightly greater than 3 MeV.

 

 

Example 3

Oxygen can be produced by bombarding nitrogen with alpha particles

 

            Initial state (reactants)      Final state (products)

                                4He2  +  14N7      17O8 + 1H1

 

Mass: Reactants

     4.001506  u 

     13.999234  u 

Mass: Products

     16.994743  u 

     1.007276  u 

Mass defect

     dM = -0.001280  u 

Disintegration value Q

     Q = -1.191875  MeV 

 

Since Q < 0, this reaction does not occur spontaneously.

 

Ernest Rutherford used alpha particles to bombard nitrogen target nuclei to produce oxygen and protons. If the incident alpha particles had kinetic energy equal to 7.70 MeV, calculate the Q-value and the maximum kinetic energy of the protons and oxygen nuclei.

 

Initial state (reactants)      Final state (products)

             14N7  +   4He2              17O8  +   1H1

 

                    mN = 13.999233945064699 u      mHe = 4.001506094311343 u

             mO = 16.994743117225369 u       mH = 1.007276452320671 u                                 

             

(nuclei masses quoted, not atomic masses)

 

Mass deficiency

         

       

 

Disintegration energy

      

      

        

 

The energy of 6.51 MeV is shared between the oxygen and hydrogen nuclei.

 

 

RADIOACTIVITY AND THE TRANSMUTATION OF THE ELEMENTS

 

 

 

Experimental work around the turn of the 20th Century by Henri Becquerel (1852 - 1908), Ernest Rutherford (1871 - 1937), Marie Curie (1867 – 1934) and Pierre Curie (1859 – 1906) and others indicated that three kinds of natural radiations: alpha particles a, beta particles b and gamma rays g were emitted from a nucleus of an unstable atom. 

 

These radiations were emitted naturally from certain elements such as uranium, polonium, radium, and actinium. Further, it was found that the emission of natural radiations by one element usually led to the production of a different element.  For instance, radium was produced because of the radioactive decay of uranium. This change of a parent nucleus into a different daughter nucleus is called a nuclear transmutation.  One element effectively changes into another element.

 

When transmutation occurs, the sum of the atomic numbers on the left-hand side of the nuclear equation equals the sum of the atomic numbers on the right-hand side.  Likewise, the sum of the mass numbers on the left-hand side of the nuclear equation equals the sum of the mass numbers on the right-hand side.

 

        Alpha decay        

       

        Beta decay           

                                      

 

                                        

 

 

       Gamma decay   

 

 

beta particles:   electron      and positron (antielectron)    

 

neutrino    and  antineutrino   

 

 

Example 1

 

Image that you are given the task of producing a 10 minute video clip for YouTube as an introductory lesson on special relativity. Make a list of the concepts that you would introduce. What images and animations would you include?

 

    Watch Vdeo 1: Theory of relativity explained in 7 mins

 

How does your production compare with the LondonCityGirl video?

 

The audio has a few errors in the physics. What were the errors?

 

The discussion on mass is incorrect. Why? How would you change the video to give a better model of mass, momentum and energy?

 

Watch Video 2: Special Relativity: Crash Course Physics #42

 

Watch Video 3: Professor Dave Explains

 

Which video is best (1) or (2) or (3)?

Justify your answer.